메뉴 건너뛰기




Volumn 2, Issue , 2015, Pages 998-1008

Artificial neural networks and support vector machines: Contrast study for groundwater level prediction

Author keywords

Forecasting; Groundwater; Irrigation; Neural networks; Support vector machine; Support vector regression; Water efficiency and modeling

Indexed keywords

AGRICULTURAL MACHINERY; AGRICULTURE; AQUIFERS; ARTIFICIAL INTELLIGENCE; CULTIVATION; DECISION SUPPORT SYSTEMS; EFFICIENCY; FORECASTING; GROUNDWATER; GROUNDWATER RESOURCES; IRRIGATION; LEARNING SYSTEMS; MEAN SQUARE ERROR; NEURAL NETWORKS; OPTIMIZATION; SUPPORT VECTOR MACHINES; VECTORS; WATER SUPPLY SYSTEMS;

EID: 84951806553     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (16)

References (19)
  • 1
    • 0034174396 scopus 로고    scopus 로고
    • Artificial Neural Networks in Hydrology. II: Hydrologic Applications
    • ASCE Task Committee. (2000). Artificial Neural Networks in Hydrology. II: Hydrologic Applications. Journal of Hydrologic Engineering, 5(2), 124-137. doi:10. 1061/(ASCE)1084-0699(2000)5:2(124).
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
  • 2
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: The support vector machines approach
    • Asefa, T., M. Kemblowski, M. McKee, and A. Khalil. 2006. Multi-time scale stream flow predictions: The support vector machines approach. Journal of Hydrology 318(1-4):7-16.
    • (2006) Journal of Hydrology , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 4
    • 79251608751 scopus 로고    scopus 로고
    • Support vector regression with reduced training sets for air temperature prediction: A comparison with artificial neural networks
    • Chevalier, R., G. Hoogenboom, R. McClendon, and J. Paz. 2011. Support vector regression with reduced training sets for air temperature prediction: a comparison with artificial neural networks. Neural Computing and Applications 20(1):151-159.
    • (2011) Neural Computing and Applications , vol.20 , Issue.1 , pp. 151-159
    • Chevalier, R.1    Hoogenboom, G.2    McClendon, R.3    Paz, J.4
  • 5
    • 15944365544 scopus 로고    scopus 로고
    • A neural network model for predicting aquifer water level elevations
    • Coppola, E. A., A. J. Rana, M. M. Poulton, F. Szidarovszky, and V. W. Uhl. 2005. A neural network model for predicting aquifer water level elevations. Ground Water 43(2):231-241.
    • (2005) Ground Water , vol.43 , Issue.2 , pp. 231-241
    • Coppola, E.A.1    Rana, A.J.2    Poulton, M.M.3    Szidarovszky, F.4    Uhl, V.W.5
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C, and V. Vapnik. 1995. Support-vector networks. Machine Learning 20(3):273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly, P., F. Anctil, R. Aravena, and B. Bobee. 2001. Artificial neural network modeling of water table depth fluctuations. Water Resources Research 37(4):885-896.
    • (2001) Water Resources Research , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobee, B.4
  • 8
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos, I. N., P. Coulibaly, and I. K. Tsanis. 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology 309(1-4):229-240.
    • (2005) Journal of Hydrology , vol.309 , Issue.1-4 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Tsanis, I.K.3
  • 10
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generalisation beyond the calibration range
    • Imrie, C, S. Durucan, and A. Korre. 2000. River flow prediction using artificial neural networks: generalisation beyond the calibration range. Journal of Hydrology 233(1 ):138-153.
    • (2000) Journal of Hydrology , vol.233 , Issue.1 , pp. 138-153
    • Imrie, C.1    Durucan, S.2    Korre, A.3
  • 11
    • 0029663621 scopus 로고    scopus 로고
    • The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters
    • Maier, H. R., and G. C. Dandy. 1996. The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters. Water Resources Research 32(4):1013-1022.
    • (1996) Water Resources Research , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 13
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W., and M. J. Hall. 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41(3):399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 14
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach
    • Nayak, P., Y. R. S. Rao, and K. P. Sudheer. 2006. Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach. Water Resources Management 20(1):77-90.
    • (2006) Water Resources Management , vol.20 , Issue.1 , pp. 77-90
    • Nayak, P.1    Rao, Y.R.S.2    Sudheer, K.P.3
  • 15
    • 84899447875 scopus 로고    scopus 로고
    • Support vector machine applications in the field of hydrology: A review
    • Raghavendra. N, S., and P. C. Deka. 2014. Support vector machine applications in the field of hydrology: A review. Applied Soft Computing 19(0):372-386.
    • (2014) Applied Soft Computing , vol.19 , pp. 372-386
    • Raghavendra, N.S.1    Deka, P.C.2
  • 16
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-Runoff Modeling Using Artificial Neural Networks and Conceptual Models
    • Tokar, A., and M. Markus. 2000. Precipitation-Runoff Modeling Using Artificial Neural Networks and Conceptual Models. Journal of Hydrologic Engineering 5(2):156-161.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.1    Markus, M.2
  • 18
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
    • Yoon, H., S.-C. Jun, Y. Hyun, G.-O. Bae, and K.-K. Lee. 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology 396(1-2):128-138.
    • (2011) Journal of Hydrology , vol.396 , Issue.1-2 , pp. 128-138
    • Yoon, H.1    Jun, S.-C.2    Hyun, Y.3    Bae, G.-O.4    Lee, K.-K.5
  • 19
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu, P.-S., S.-T. Chen, and I. F. Chang. 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology 328(3-4):704-716.
    • (2006) Journal of Hydrology , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.-S.1    Chen, S.-T.2    Chang, I.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.