-
1
-
-
0034174396
-
Artificial Neural Networks in Hydrology. II: Hydrologic Applications
-
ASCE Task Committee. (2000). Artificial Neural Networks in Hydrology. II: Hydrologic Applications. Journal of Hydrologic Engineering, 5(2), 124-137. doi:10. 1061/(ASCE)1084-0699(2000)5:2(124).
-
(2000)
Journal of Hydrologic Engineering
, vol.5
, Issue.2
, pp. 124-137
-
-
-
2
-
-
31044438334
-
Multi-time scale stream flow predictions: The support vector machines approach
-
Asefa, T., M. Kemblowski, M. McKee, and A. Khalil. 2006. Multi-time scale stream flow predictions: The support vector machines approach. Journal of Hydrology 318(1-4):7-16.
-
(2006)
Journal of Hydrology
, vol.318
, Issue.1-4
, pp. 7-16
-
-
Asefa, T.1
Kemblowski, M.2
McKee, M.3
Khalil, A.4
-
4
-
-
79251608751
-
Support vector regression with reduced training sets for air temperature prediction: A comparison with artificial neural networks
-
Chevalier, R., G. Hoogenboom, R. McClendon, and J. Paz. 2011. Support vector regression with reduced training sets for air temperature prediction: a comparison with artificial neural networks. Neural Computing and Applications 20(1):151-159.
-
(2011)
Neural Computing and Applications
, vol.20
, Issue.1
, pp. 151-159
-
-
Chevalier, R.1
Hoogenboom, G.2
McClendon, R.3
Paz, J.4
-
5
-
-
15944365544
-
A neural network model for predicting aquifer water level elevations
-
Coppola, E. A., A. J. Rana, M. M. Poulton, F. Szidarovszky, and V. W. Uhl. 2005. A neural network model for predicting aquifer water level elevations. Ground Water 43(2):231-241.
-
(2005)
Ground Water
, vol.43
, Issue.2
, pp. 231-241
-
-
Coppola, E.A.1
Rana, A.J.2
Poulton, M.M.3
Szidarovszky, F.4
Uhl, V.W.5
-
6
-
-
34249753618
-
Support-vector networks
-
Cortes, C, and V. Vapnik. 1995. Support-vector networks. Machine Learning 20(3):273-297.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
7
-
-
0034993945
-
Artificial neural network modeling of water table depth fluctuations
-
Coulibaly, P., F. Anctil, R. Aravena, and B. Bobee. 2001. Artificial neural network modeling of water table depth fluctuations. Water Resources Research 37(4):885-896.
-
(2001)
Water Resources Research
, vol.37
, Issue.4
, pp. 885-896
-
-
Coulibaly, P.1
Anctil, F.2
Aravena, R.3
Bobee, B.4
-
8
-
-
20344369583
-
Groundwater level forecasting using artificial neural networks
-
Daliakopoulos, I. N., P. Coulibaly, and I. K. Tsanis. 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology 309(1-4):229-240.
-
(2005)
Journal of Hydrology
, vol.309
, Issue.1-4
, pp. 229-240
-
-
Daliakopoulos, I.N.1
Coulibaly, P.2
Tsanis, I.K.3
-
9
-
-
84911464997
-
-
ASABE Paper 141897470. St. Joseph, Mich.: ASABE
-
Guzman, S. M., Paz, J. O., & Tagert, M. L. M. (2014). A neural network framework to estimate groundwater levels in the Mississippi river valley shallow alluvial aquifer. ASABE Paper 141897470. St. Joseph, Mich.: ASABE.
-
(2014)
A Neural Network Framework to Estimate Groundwater Levels in the Mississippi River Valley Shallow Alluvial Aquifer
-
-
Guzman, S.M.1
Paz, J.O.2
Tagert, M.L.M.3
-
10
-
-
0034641121
-
River flow prediction using artificial neural networks: Generalisation beyond the calibration range
-
Imrie, C, S. Durucan, and A. Korre. 2000. River flow prediction using artificial neural networks: generalisation beyond the calibration range. Journal of Hydrology 233(1 ):138-153.
-
(2000)
Journal of Hydrology
, vol.233
, Issue.1
, pp. 138-153
-
-
Imrie, C.1
Durucan, S.2
Korre, A.3
-
11
-
-
0029663621
-
The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters
-
Maier, H. R., and G. C. Dandy. 1996. The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters. Water Resources Research 32(4):1013-1022.
-
(1996)
Water Resources Research
, vol.32
, Issue.4
, pp. 1013-1022
-
-
Maier, H.R.1
Dandy, G.C.2
-
13
-
-
0030159380
-
Artificial neural networks as rainfall-runoff models
-
Minns, A. W., and M. J. Hall. 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41(3):399-417.
-
(1996)
Hydrological Sciences Journal
, vol.41
, Issue.3
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
14
-
-
32044458602
-
Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach
-
Nayak, P., Y. R. S. Rao, and K. P. Sudheer. 2006. Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach. Water Resources Management 20(1):77-90.
-
(2006)
Water Resources Management
, vol.20
, Issue.1
, pp. 77-90
-
-
Nayak, P.1
Rao, Y.R.S.2
Sudheer, K.P.3
-
15
-
-
84899447875
-
Support vector machine applications in the field of hydrology: A review
-
Raghavendra. N, S., and P. C. Deka. 2014. Support vector machine applications in the field of hydrology: A review. Applied Soft Computing 19(0):372-386.
-
(2014)
Applied Soft Computing
, vol.19
, pp. 372-386
-
-
Raghavendra, N.S.1
Deka, P.C.2
-
16
-
-
0034174397
-
Precipitation-Runoff Modeling Using Artificial Neural Networks and Conceptual Models
-
Tokar, A., and M. Markus. 2000. Precipitation-Runoff Modeling Using Artificial Neural Networks and Conceptual Models. Journal of Hydrologic Engineering 5(2):156-161.
-
(2000)
Journal of Hydrologic Engineering
, vol.5
, Issue.2
, pp. 156-161
-
-
Tokar, A.1
Markus, M.2
-
18
-
-
78650179085
-
A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
-
Yoon, H., S.-C. Jun, Y. Hyun, G.-O. Bae, and K.-K. Lee. 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology 396(1-2):128-138.
-
(2011)
Journal of Hydrology
, vol.396
, Issue.1-2
, pp. 128-138
-
-
Yoon, H.1
Jun, S.-C.2
Hyun, Y.3
Bae, G.-O.4
Lee, K.-K.5
-
19
-
-
33746916489
-
Support vector regression for real-time flood stage forecasting
-
Yu, P.-S., S.-T. Chen, and I. F. Chang. 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology 328(3-4):704-716.
-
(2006)
Journal of Hydrology
, vol.328
, Issue.3-4
, pp. 704-716
-
-
Yu, P.-S.1
Chen, S.-T.2
Chang, I.F.3
|