메뉴 건너뛰기




Volumn 20, Issue 1, 2011, Pages 151-159

Support vector regression with reduced training sets for air temperature prediction: A comparison with artificial neural networks

Author keywords

Air temperature; Artificial neural networks; Frost; Support vector machines; Weather modeling

Indexed keywords

AGRICULTURAL ROBOTS; AGRICULTURE; ATMOSPHERIC TEMPERATURE; DATA HANDLING; FORECASTING; METEOROLOGY; SUPPORT VECTOR MACHINES; SUPPORT VECTOR REGRESSION;

EID: 79251608751     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-010-0363-y     Document Type: Article
Times cited : (89)

References (34)
  • 2
    • 4344611951 scopus 로고    scopus 로고
    • Municipal heat wave response plans
    • Bernard SM, McGeehin MA (2004) Municipal heat wave response plans. Am J Public Health 94(9): 1520-1522.
    • (2004) Am J Public Health , vol.94 , Issue.9 , pp. 1520-1522
    • Bernard, S.M.1    McGeehin, M.A.2
  • 4
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20(3): 273-297.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 13244270060 scopus 로고    scopus 로고
    • Applying support vector machines to predict building energy consumption in tropical region
    • Dong B, Cao C, Lee SE (2005) Applying support vector machines to predict building energy consumption in tropical region. Energy and Build 37: 545-553.
    • (2005) Energy and Build , vol.37 , pp. 545-553
    • Dong, B.1    Cao, C.2    Lee, S.E.3
  • 8
    • 0000897328 scopus 로고    scopus 로고
    • The kernel adatron algorithm: a fast and simple learning procedure for support vector machines
    • Morgan Kaufman Publishers, Madison
    • Friess T-T, Cristianini N, Campbell C (1998) The kernel adatron algorithm: a fast and simple learning procedure for support vector machines. In: 15th international conference on machine learning, Morgan Kaufman Publishers, Madison, pp 188-196.
    • (1998) 15th international conference on machine learning , pp. 188-196
    • Friess, T.-T.1    Cristianini, N.2    Campbell, C.3
  • 9
    • 0242288821 scopus 로고    scopus 로고
    • Finite newton method for lagrangian support vector machine classification
    • Fung G, Mangasarian OL (2003) Finite newton method for lagrangian support vector machine classification. Neurocomputing 55: 39-55.
    • (2003) Neurocomputing , vol.55 , pp. 39-55
    • Fung, G.1    Mangasarian, O.L.2
  • 10
    • 35148840969 scopus 로고    scopus 로고
    • Reducing examples to accelerate support vector regression
    • Guo G, Zhang J-S (2007) Reducing examples to accelerate support vector regression. Pattern Recognit Let 28: 2173-2183.
    • (2007) Pattern Recognit Let , vol.28 , pp. 2173-2183
    • Guo, G.1    Zhang, J.-S.2
  • 11
    • 2342587934 scopus 로고
    • The Georgia automated environmental monitoring network
    • K. J. Hatcher (Ed.), Orlando: The University of Georgia
    • Hoogenboom G (1993) The Georgia automated environmental monitoring network. In: Hatcher KJ (ed) 1993 Georgia water resources conference. The University of Georgia, Orlando, pp 398-402.
    • (1993) 1993 Georgia Water Resources Conference , pp. 398-402
    • Hoogenboom, G.1
  • 13
    • 33947106062 scopus 로고    scopus 로고
    • Freeze prediction for specific locations using artificial neural networks
    • Jain A, McClendon RW, Hoogenboom G (2006) Freeze prediction for specific locations using artificial neural networks. Transactions of the ASABE 49(6): 1955-1962.
    • (2006) Transactions of the ASABE , vol.49 , Issue.6 , pp. 1955-1962
    • Jain, A.1    McClendon, R.W.2    Hoogenboom, G.3
  • 14
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Scholkopf, C. Burges, and A. Smola (Eds.), Cambridge: MIT Press
    • Joachims T (1999) Making large-scale SVM learning practical. In: Scholkopf B, Burges C, Smola A (eds) Advances in kernel methods-support vector learning, Chap. 11. MIT Press, Cambridge, pp 169-184.
    • (1999) Advances in Kernel Methods-Support Vector Learning, Chap. 11 , pp. 169-184
    • Joachims, T.1
  • 16
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • Khan MS, Coulibaly P (2006) Application of support vector machine in lake water level prediction. J Hydrol Eng 11(3): 199-205.
    • (2006) J Hydrol Eng , vol.11 , Issue.3 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 17
    • 84899018791 scopus 로고    scopus 로고
    • Active set support vector machine classification
    • T. Leen, T. Dietterich, and V. Tresp (Eds.), Cambridge: MIT-Press
    • Mangasarian OL, Musicant DR (2001) Active set support vector machine classification. In: Leen T, Dietterich T, Tresp V (eds) Advances in neural information processing systems 13. MIT-Press, Cambridge, pp 577-583.
    • (2001) Advances in Neural Information Processing Systems 13 , pp. 577-583
    • Mangasarian, O.L.1    Musicant, D.R.2
  • 19
    • 51749119906 scopus 로고    scopus 로고
    • Application of support vector regression to temperature forecasting for short-term load forecasting
    • IEEE, Orlando
    • Mori H, Kanaoka D (2007) Application of support vector regression to temperature forecasting for short-term load forecasting. In: IEEE joint conference on neural networks, IEEE, Orlando, pp 1085-1090.
    • (2007) IEEE joint conference on neural networks , pp. 1085-1090
    • Mori, H.1    Kanaoka, D.2
  • 21
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of svms using sequential minimal optimization
    • B. Scholkopf, C. Burges, and A. Smola (Eds.), Cambridge: MIT Press
    • Platt JC (1999) Fast training of svms using sequential minimal optimization. In: Scholkopf B, Burges C, Smola A (eds) Advances in kernel methods-support vector learning. MIT Press, Cambridge, pp 185-208.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 22
    • 21444442416 scopus 로고    scopus 로고
    • Application of least squares vector machines in modeling water vapor and carbon dioxide fluxes over a cropland
    • Qin Z, Yu Q, Li J, yi Wu Z, min Hu B (2005) Application of least squares vector machines in modeling water vapor and carbon dioxide fluxes over a cropland. J Zhejiang Univ 6(6): 491-495.
    • (2005) J Zhejiang Univ , vol.6 , Issue.6 , pp. 491-495
    • Qin, Z.1    Yu, Q.2    Li, J.3    Yi Wu, Z.4    Min Hu, B.5
  • 23
    • 0034276696 scopus 로고    scopus 로고
    • Genetic component of heat stress in dairy cattle, development of heat index
    • Ravagnolo O, Misztal I, Hoogenboom G (2000) Genetic component of heat stress in dairy cattle, development of heat index. J Dairy Sci 83(9): 2120-2125.
    • (2000) J Dairy Sci , vol.83 , Issue.9 , pp. 2120-2125
    • Ravagnolo, O.1    Misztal, I.2    Hoogenboom, G.3
  • 25
    • 84902142380 scopus 로고    scopus 로고
    • Incorporating invariances in support vector learning machines
    • C. Malsburgvon der, W. V. Seelen, J. Vorbruggen, and B. Sendhoff (Eds.), Berlin: Springer
    • Scholkopf B, Burges C, Vapnik V (1996) Incorporating invariances in support vector learning machines. In: von der Malsburg C, Seelen WV, Vorbruggen J, Sendhoff B (eds) ICANN '96 international conference on artificial neural networks, vol 1112. Springer, Berlin, pp 47-52.
    • (1996) ICANN '96 International Conference on Artificial Neural Networks , vol.1112 , pp. 47-52
    • Scholkopf, B.1    Burges, C.2    Vapnik, V.3
  • 27
    • 67449132094 scopus 로고    scopus 로고
    • Artificial neural networks for automated year-round temperature prediction
    • Smith BA, Hoogenboom G, McClendon R (2009) Artificial neural networks for automated year-round temperature prediction. Comput Electron Agri 68: 52-61.
    • (2009) Comput Electron Agri , vol.68 , pp. 52-61
    • Smith, B.A.1    Hoogenboom, G.2    McClendon, R.3
  • 28
    • 38049067157 scopus 로고    scopus 로고
    • Improving air temperature prediction with artificial neural networks
    • Smith BA, McClendon RW, Hoogenboom G (2006) Improving air temperature prediction with artificial neural networks. Int J Comput Intell 3(3): 179-186.
    • (2006) Int J Comput Intell , vol.3 , Issue.3 , pp. 179-186
    • Smith, B.A.1    McClendon, R.W.2    Hoogenboom, G.3
  • 29
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola AJ, Scholkopf B (2004) A tutorial on support vector regression. Statistics and Comput 14: 199-222.
    • (2004) Statistics and Comput , vol.14 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 30
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: fast svm training on very large data sets
    • Tsang IW, Kwok JT, Cheung P (2005) Core vector machines: fast svm training on very large data sets. J Mach Learn Res 6: 363-392.
    • (2005) J Mach Learn Res , vol.6 , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.3
  • 33
    • 79251604721 scopus 로고
    • Ward Systems Group, Ward Systems Group
    • Ward Systems Group (1993) Manual of neuroShell 2. Ward Systems Group.
    • (1993) Manual of neuroShell , vol.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.