메뉴 건너뛰기




Volumn 25, Issue 12, 2015, Pages 769-779

Regulation of Microtubule Growth and Catastrophe: Unifying Theory and Experiment

Author keywords

Catastrophe; Cytoskeleton; Microtubule; Microtubule associated proteins

Indexed keywords

GUANOSINE TRIPHOSPHATE; KINESIN; MICROTUBULE ASSOCIATED PROTEIN; POLYMER; TUBULIN;

EID: 84951570143     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2015.08.009     Document Type: Review
Times cited : (76)

References (104)
  • 1
    • 84929294683 scopus 로고    scopus 로고
    • Kinesin superfamily proteins (KIFs): various functions and their relevance for important phenomena in life and diseases
    • Hirokawa N., Tanaka Y. Kinesin superfamily proteins (KIFs): various functions and their relevance for important phenomena in life and diseases. Exp. Cell Res. 2015, 334:16-25.
    • (2015) Exp. Cell Res. , vol.334 , pp. 16-25
    • Hirokawa, N.1    Tanaka, Y.2
  • 2
    • 84936994657 scopus 로고    scopus 로고
    • Axonal transport defects in Alzheimer's disease
    • Wang Z-X., et al. Axonal transport defects in Alzheimer's disease. Mol. Neurobiol. 2015, 51:1309-1321.
    • (2015) Mol. Neurobiol. , vol.51 , pp. 1309-1321
    • Wang, Z.-X.1
  • 3
    • 48249102303 scopus 로고    scopus 로고
    • Role of axonal transport in neurodegenerative diseases
    • De Vos K.J., et al. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 2008, 31:151-173.
    • (2008) Annu. Rev. Neurosci. , vol.31 , pp. 151-173
    • De Vos, K.J.1
  • 5
    • 77957817006 scopus 로고    scopus 로고
    • Patronin regulates the microtubule network by protecting microtubule minus ends
    • Goodwin S.S., Vale R.D. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 2010, 143:263-274.
    • (2010) Cell , vol.143 , pp. 263-274
    • Goodwin, S.S.1    Vale, R.D.2
  • 6
    • 84893542408 scopus 로고    scopus 로고
    • Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition
    • Jiang K., et al. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev. Cell 2014, 28:295-309.
    • (2014) Dev. Cell , vol.28 , pp. 295-309
    • Jiang, K.1
  • 7
    • 84856196744 scopus 로고    scopus 로고
    • K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly
    • Meunier S., Vernos I. K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nat. Cell Biol. 2011, 13:1406-1414.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1406-1414
    • Meunier, S.1    Vernos, I.2
  • 8
    • 84922946413 scopus 로고    scopus 로고
    • Microtubule minus-end-targeting proteins
    • Akhmanova A., Hoogenraad C.C. Microtubule minus-end-targeting proteins. Curr. Biol. 2015, 25:R162-R171.
    • (2015) Curr. Biol. , vol.25 , pp. R162-R171
    • Akhmanova, A.1    Hoogenraad, C.C.2
  • 9
    • 0037452096 scopus 로고    scopus 로고
    • Dynamics and mechanics of the microtubule plus end
    • Howard J., Hyman A. Dynamics and mechanics of the microtubule plus end. Nature 2003, 422:753-758.
    • (2003) Nature , vol.422 , pp. 753-758
    • Howard, J.1    Hyman, A.2
  • 10
    • 33751227843 scopus 로고    scopus 로고
    • Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
    • DeLuca J.G., et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 2006, 127:969-982.
    • (2006) Cell , vol.127 , pp. 969-982
    • DeLuca, J.G.1
  • 11
    • 84891899149 scopus 로고    scopus 로고
    • Linked in: formation and regulation of microtubule attachments during chromosome segregation
    • Cheerambathur D.K., Desai A. Linked in: formation and regulation of microtubule attachments during chromosome segregation. Curr. Opin. Cell Biol. 2014, 26:113-122.
    • (2014) Curr. Opin. Cell Biol. , vol.26 , pp. 113-122
    • Cheerambathur, D.K.1    Desai, A.2
  • 12
    • 35548937762 scopus 로고    scopus 로고
    • Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex
    • Hoppeler-Lebel A., et al. Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex. J. Cell Sci. 2007, 120:3299-3308.
    • (2007) J. Cell Sci. , vol.120 , pp. 3299-3308
    • Hoppeler-Lebel, A.1
  • 13
    • 38949126881 scopus 로고    scopus 로고
    • STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER
    • Grigoriev I., et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 2008, 18:177-182.
    • (2008) Curr. Biol. , vol.18 , pp. 177-182
    • Grigoriev, I.1
  • 14
    • 41149156427 scopus 로고    scopus 로고
    • Tracking the ends: a dynamic protein network controls the fate of microtubule tips
    • Akhmanova A., Steinmetz M.O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 2008, 9:309-322.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 309-322
    • Akhmanova, A.1    Steinmetz, M.O.2
  • 15
    • 33745506389 scopus 로고    scopus 로고
    • CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5
    • Lansbergen G., et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5. Dev. Cell 2006, 11:21-32.
    • (2006) Dev. Cell , vol.11 , pp. 21-32
    • Lansbergen, G.1
  • 16
    • 84879375553 scopus 로고    scopus 로고
    • Dynein motion switches from diffusive to directed upon cortical anchoring
    • Ananthanarayanan V., et al. Dynein motion switches from diffusive to directed upon cortical anchoring. Cell 2013, 153:1526-1536.
    • (2013) Cell , vol.153 , pp. 1526-1536
    • Ananthanarayanan, V.1
  • 17
    • 59849100330 scopus 로고    scopus 로고
    • Touch, grasp, deliver and control: functional cross-talk between microtubules and cell adhesions
    • Akhmanova A., et al. Touch, grasp, deliver and control: functional cross-talk between microtubules and cell adhesions. Traffic 2009, 10:268-274.
    • (2009) Traffic , vol.10 , pp. 268-274
    • Akhmanova, A.1
  • 18
    • 84902675050 scopus 로고    scopus 로고
    • Reconstitution of dynein transport to the microtubule plus end by kinesin
    • Roberts A.J., et al. Reconstitution of dynein transport to the microtubule plus end by kinesin. Elife 2014, 2014:1-16.
    • (2014) Elife , vol.2014 , pp. 1-16
    • Roberts, A.J.1
  • 19
    • 84856753159 scopus 로고    scopus 로고
    • Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters
    • Laan L., et al. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 2012, 148:502-514.
    • (2012) Cell , vol.148 , pp. 502-514
    • Laan, L.1
  • 20
    • 0022919318 scopus 로고
    • Beyond self-assembly: from microtubules to morphogenesis
    • Kirschner M., Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell 1986, 45:329-342.
    • (1986) Cell , vol.45 , pp. 329-342
    • Kirschner, M.1    Mitchison, T.2
  • 21
    • 0021686169 scopus 로고
    • Dynamic instability of microtubule growth
    • Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature 1984, 312:237-242.
    • (1984) Nature , vol.312 , pp. 237-242
    • Mitchison, T.1    Kirschner, M.2
  • 23
    • 0024544706 scopus 로고
    • Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual microtubules in vitro
    • Walker R.A., et al. Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual microtubules in vitro. J. Cell Biol. 1989, 108:931-937.
    • (1989) J. Cell Biol. , vol.108 , pp. 931-937
    • Walker, R.A.1
  • 24
    • 0025946396 scopus 로고
    • Dilution of individual microtubules observed in real time in vitro: evidence that cap size is small and independent of elongation rate
    • Walker R.A., et al. Dilution of individual microtubules observed in real time in vitro: evidence that cap size is small and independent of elongation rate. J. Cell Biol. 1991, 114:73-81.
    • (1991) J. Cell Biol. , vol.114 , pp. 73-81
    • Walker, R.A.1
  • 25
    • 0026008120 scopus 로고
    • Dilution-induced disassembly of microtubules: relation to dynamic instability and the GTP cap
    • Voter W.A., et al. Dilution-induced disassembly of microtubules: relation to dynamic instability and the GTP cap. Cell Motil. Cytoskeleton 1991, 18:55-62.
    • (1991) Cell Motil. Cytoskeleton , vol.18 , pp. 55-62
    • Voter, W.A.1
  • 26
    • 0019436432 scopus 로고
    • Kinetic analysis of guanosine 5'-triphosphate hydrolysis associated with tubulin polymerization
    • Carlier M.F., Pantaloni D. Kinetic analysis of guanosine 5'-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry 1981, 20:1918-1924.
    • (1981) Biochemistry , vol.20 , pp. 1918-1924
    • Carlier, M.F.1    Pantaloni, D.2
  • 27
    • 68049084655 scopus 로고    scopus 로고
    • Growth, fluctuation and switching at microtubule plus ends
    • Howard J., Hyman A. Growth, fluctuation and switching at microtubule plus ends. Nat. Rev. Mol. Cell Biol. 2009, 10:569-574.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 569-574
    • Howard, J.1    Hyman, A.2
  • 28
    • 34548289289 scopus 로고    scopus 로고
    • Microtubule assembly dynamics at the nanoscale
    • Schek H.T., et al. Microtubule assembly dynamics at the nanoscale. Curr. Biol. 2007, 17:1445-1455.
    • (2007) Curr. Biol. , vol.17 , pp. 1445-1455
    • Schek, H.T.1
  • 29
    • 81855189480 scopus 로고    scopus 로고
    • Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe
    • Gardner M.K., et al. Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe. Cell 2011, 147:1092-1103.
    • (2011) Cell , vol.147 , pp. 1092-1103
    • Gardner, M.K.1
  • 30
    • 84880701139 scopus 로고    scopus 로고
    • Evolving tip structures can explain age-dependent microtubule catastrophe
    • Coombes C.E., et al. Evolving tip structures can explain age-dependent microtubule catastrophe. Curr. Biol. 2013, 23:1342-1348.
    • (2013) Curr. Biol. , vol.23 , pp. 1342-1348
    • Coombes, C.E.1
  • 31
    • 33846429185 scopus 로고    scopus 로고
    • Microtubule polymerases and depolymerases
    • Howard J., Hyman A. Microtubule polymerases and depolymerases. Curr. Opin. Cell Biol. 2007, 19:31-35.
    • (2007) Curr. Opin. Cell Biol. , vol.19 , pp. 31-35
    • Howard, J.1    Hyman, A.2
  • 32
    • 77957881380 scopus 로고    scopus 로고
    • Microtubule +TIPs at a glance
    • Akhmanova A., Steinmetz M.O. Microtubule +TIPs at a glance. J. Cell Sci. 2010, 123:3415-3419.
    • (2010) J. Cell Sci. , vol.123 , pp. 3415-3419
    • Akhmanova, A.1    Steinmetz, M.O.2
  • 33
    • 70350144700 scopus 로고    scopus 로고
    • Regulation of microtubule dynamic instability
    • Van der Vaart B., et al. Regulation of microtubule dynamic instability. Biochem. Soc. Trans. 2009, 37:1007-1013.
    • (2009) Biochem. Soc. Trans. , vol.37 , pp. 1007-1013
    • Van der Vaart, B.1
  • 34
    • 82755197128 scopus 로고    scopus 로고
    • Regulation of microtubule dynamics by kinesins
    • Drummond D.R. Regulation of microtubule dynamics by kinesins. Semin. Cell Dev. Biol. 2011, 22:927-934.
    • (2011) Semin. Cell Dev. Biol. , vol.22 , pp. 927-934
    • Drummond, D.R.1
  • 35
    • 84934440511 scopus 로고    scopus 로고
    • Microtubule-associated proteins control the kinetics of microtubule nucleation
    • Wieczorek M., et al. Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol. 2015, 17:907-916.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 907-916
    • Wieczorek, M.1
  • 36
    • 84865037917 scopus 로고    scopus 로고
    • Microtubule-severing enzymes at the cutting edge
    • Sharp D.J., Ross J.L. Microtubule-severing enzymes at the cutting edge. J. Cell Sci. 2012, 125:2561-2569.
    • (2012) J. Cell Sci. , vol.125 , pp. 2561-2569
    • Sharp, D.J.1    Ross, J.L.2
  • 37
    • 81855196008 scopus 로고    scopus 로고
    • Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions
    • Janke C., Bulinski J.C. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 2011, 12:773-786.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 773-786
    • Janke, C.1    Bulinski, J.C.2
  • 38
    • 0026775358 scopus 로고
    • Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts
    • Verde F., et al. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J. Cell Biol. 1992, 118:1097-1108.
    • (1992) J. Cell Biol. , vol.118 , pp. 1097-1108
    • Verde, F.1
  • 39
    • 0000315224 scopus 로고
    • Physical aspects of the growth and regulation of microtubule structures
    • Dogterom M., Leibler S. Physical aspects of the growth and regulation of microtubule structures. Phys. Rev. Lett. 1993, 70:1347-1350.
    • (1993) Phys. Rev. Lett. , vol.70 , pp. 1347-1350
    • Dogterom, M.1    Leibler, S.2
  • 40
    • 0024094432 scopus 로고
    • Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies
    • Walker R.A., et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 1988, 107:1437-1448.
    • (1988) J. Cell Biol. , vol.107 , pp. 1437-1448
    • Walker, R.A.1
  • 41
    • 77955588492 scopus 로고    scopus 로고
    • CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule
    • Al-Bassam J., et al. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. Dev. Cell 2010, 19:245-258.
    • (2010) Dev. Cell , vol.19 , pp. 245-258
    • Al-Bassam, J.1
  • 42
    • 0022896901 scopus 로고
    • Tau protein function in living cells
    • Drubin D.G., Kirschner M.W. Tau protein function in living cells. J. Cell Biol. 1986, 103:2739-2746.
    • (1986) J. Cell Biol. , vol.103 , pp. 2739-2746
    • Drubin, D.G.1    Kirschner, M.W.2
  • 43
    • 0027058857 scopus 로고
    • Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau
    • Drechsel D.N., et al. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 1992, 3:1141-1154.
    • (1992) Mol. Biol. Cell , vol.3 , pp. 1141-1154
    • Drechsel, D.N.1
  • 44
    • 61349120799 scopus 로고    scopus 로고
    • FTDP-17 mutations in tau alter the regulation of microtubule dynamics: an "alternative core" model for normal and pathological tau action
    • LeBoeuf A.C., et al. FTDP-17 mutations in tau alter the regulation of microtubule dynamics: an "alternative core" model for normal and pathological tau action. J. Biol. Chem. 2008, 283:36406-36415.
    • (2008) J. Biol. Chem. , vol.283 , pp. 36406-36415
    • LeBoeuf, A.C.1
  • 45
    • 84907906510 scopus 로고    scopus 로고
    • Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency
    • Podolski M., et al. Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency. J. Biol. Chem. 2014, 289:28087-28093.
    • (2014) J. Biol. Chem. , vol.289 , pp. 28087-28093
    • Podolski, M.1
  • 46
    • 0025891138 scopus 로고
    • Homology of a 150K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued
    • Holzbaur E.L., et al. Homology of a 150K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued. Nature 1991, 351:579-583.
    • (1991) Nature , vol.351 , pp. 579-583
    • Holzbaur, E.L.1
  • 47
    • 84880944148 scopus 로고    scopus 로고
    • Glued is a neuron-specific anti-catastrophe factor
    • Glued is a neuron-specific anti-catastrophe factor. PLoS Biol. 2013, 11:1.
    • (2013) PLoS Biol. , vol.11 , pp. 1
    • Lazarus, J.E.1
  • 48
    • 0030783012 scopus 로고    scopus 로고
    • Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules
    • Jourdain L., et al. Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry 1997, 36:10817-10821.
    • (1997) Biochemistry , vol.36 , pp. 10817-10821
    • Jourdain, L.1
  • 49
    • 0030048731 scopus 로고    scopus 로고
    • Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules
    • Belmont L.D., Mitchison T.J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 1996, 84:623-631.
    • (1996) Cell , vol.84 , pp. 623-631
    • Belmont, L.D.1    Mitchison, T.J.2
  • 50
    • 2942657327 scopus 로고    scopus 로고
    • Mechanism of microtubule stabilization by doublecortin
    • Moores C., et al. Mechanism of microtubule stabilization by doublecortin. Mol. Cell 2004, 14:833-839.
    • (2004) Mol. Cell , vol.14 , pp. 833-839
    • Moores, C.1
  • 51
    • 78049489092 scopus 로고    scopus 로고
    • Template-free 13-protofilament microtubule-MAP assembly visualized at 8Å resolution
    • Fourniol F.J., et al. Template-free 13-protofilament microtubule-MAP assembly visualized at 8Å resolution. J. Cell Biol. 2010, 191:463-470.
    • (2010) J. Cell Biol. , vol.191 , pp. 463-470
    • Fourniol, F.J.1
  • 52
    • 33748136479 scopus 로고    scopus 로고
    • Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner
    • Varga V., et al. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat. Cell Biol. 2006, 8:957-962.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 957-962
    • Varga, V.1
  • 53
    • 33947111858 scopus 로고    scopus 로고
    • The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression
    • Mayr M.I., et al. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr. Biol. 2007, 17:488-498.
    • (2007) Curr. Biol. , vol.17 , pp. 488-498
    • Mayr, M.I.1
  • 54
    • 38849201167 scopus 로고    scopus 로고
    • The Kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment
    • Stumpff J., et al. The Kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 2008, 14:252-262.
    • (2008) Dev. Cell , vol.14 , pp. 252-262
    • Stumpff, J.1
  • 55
    • 76749091008 scopus 로고    scopus 로고
    • The Kinesin-8 Kif18A dampens microtubule plus-end dynamics
    • Du Y., et al. The Kinesin-8 Kif18A dampens microtubule plus-end dynamics. Curr. Biol. 2010, 20:374-380.
    • (2010) Curr. Biol. , vol.20 , pp. 374-380
    • Du, Y.1
  • 56
    • 0037292454 scopus 로고    scopus 로고
    • The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends
    • Hunter A.W., et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 2003, 11:445-457.
    • (2003) Mol. Cell , vol.11 , pp. 445-457
    • Hunter, A.W.1
  • 57
    • 33748158378 scopus 로고    scopus 로고
    • Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle
    • Gupta M.L., et al. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat. Cell Biol. 2006, 8:913-923.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 913-923
    • Gupta, M.L.1
  • 58
    • 37649004096 scopus 로고    scopus 로고
    • XMAP215 is a processive microtubule polymerase
    • Brouhard G.J., et al. XMAP215 is a processive microtubule polymerase. Cell 2008, 132:79-88.
    • (2008) Cell , vol.132 , pp. 79-88
    • Brouhard, G.J.1
  • 59
    • 84878540115 scopus 로고    scopus 로고
    • Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels
    • Zanic M., et al. Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels. Nat. Cell Biol. 2013, 15:1-8.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1-8
    • Zanic, M.1
  • 60
    • 1542317579 scopus 로고    scopus 로고
    • A kinesin-like motor inhibits microtubule dynamic instability
    • Bringmann H., et al. A kinesin-like motor inhibits microtubule dynamic instability. Science 2004, 303:1519-1522.
    • (2004) Science , vol.303 , pp. 1519-1522
    • Bringmann, H.1
  • 61
    • 77955339199 scopus 로고    scopus 로고
    • A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps
    • Bieling P., et al. A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 2010, 142:420-432.
    • (2010) Cell , vol.142 , pp. 420-432
    • Bieling, P.1
  • 62
    • 43149111310 scopus 로고    scopus 로고
    • EB1 regulates microtubule dynamics and tubulin sheet closure in vitro
    • Vitre B., et al. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat. Cell Biol. 2008, 10:415-421.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 415-421
    • Vitre, B.1
  • 63
    • 84859612289 scopus 로고    scopus 로고
    • i at microtubule ends
    • i at microtubule ends. Biochemistry 2012, 51:3021-3030.
    • (2012) Biochemistry , vol.51 , pp. 3021-3030
    • Lopus, M.1
  • 64
    • 84929359579 scopus 로고    scopus 로고
    • Effects of aging in catastrophe on the steady state and dynamics of a microtubule population
    • Jemseena V., Gopalakrishnan M. Effects of aging in catastrophe on the steady state and dynamics of a microtubule population. Phys. Rev. E 2015, 91:052704.
    • (2015) Phys. Rev. E , vol.91 , pp. 052704
    • Jemseena, V.1    Gopalakrishnan, M.2
  • 65
    • 33646172546 scopus 로고    scopus 로고
    • ATP hydrolysis stimulates large length fluctuations in single actin filaments
    • Stukalin E.B., Kolomeisky A.B. ATP hydrolysis stimulates large length fluctuations in single actin filaments. Biophys. J. 2006, 90:2673-2685.
    • (2006) Biophys. J. , vol.90 , pp. 2673-2685
    • Stukalin, E.B.1    Kolomeisky, A.B.2
  • 66
    • 77951648971 scopus 로고    scopus 로고
    • Role of ATP-hydrolysis in the dynamics of a single actin filament
    • Ranjith P., et al. Role of ATP-hydrolysis in the dynamics of a single actin filament. Biophys. J. 2010, 98:1418-1427.
    • (2010) Biophys. J. , vol.98 , pp. 1418-1427
    • Ranjith, P.1
  • 67
    • 84858791174 scopus 로고    scopus 로고
    • Random hydrolysis controls the dynamic instability of microtubules
    • Padinhateeri R., et al. Random hydrolysis controls the dynamic instability of microtubules. Biophys. J. 2012, 102:1274-1283.
    • (2012) Biophys. J. , vol.102 , pp. 1274-1283
    • Padinhateeri, R.1
  • 68
    • 84876314086 scopus 로고    scopus 로고
    • Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe
    • Bowne-Anderson H., et al. Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe. Bioessays 2013, 35:452-461.
    • (2013) Bioessays , vol.35 , pp. 452-461
    • Bowne-Anderson, H.1
  • 69
    • 84914820019 scopus 로고    scopus 로고
    • Theoretical analysis of microtubule dynamics at all times
    • Li X., Kolomeisky A.B. Theoretical analysis of microtubule dynamics at all times. J. Phys. Chem. B 2014, 118:13777-13784.
    • (2014) J. Phys. Chem. B , vol.118 , pp. 13777-13784
    • Li, X.1    Kolomeisky, A.B.2
  • 70
    • 80052007210 scopus 로고    scopus 로고
    • Rapid microtubule self-assembly kinetics
    • Gardner M.K., et al. Rapid microtubule self-assembly kinetics. Cell 2011, 146:582-592.
    • (2011) Cell , vol.146 , pp. 582-592
    • Gardner, M.K.1
  • 71
    • 27744548870 scopus 로고    scopus 로고
    • Mechanochemical model of microtubule structure and self-assembly kinetics
    • Van Buren V., et al. Mechanochemical model of microtubule structure and self-assembly kinetics. Biophys. J. 2005, 89:2911-2926.
    • (2005) Biophys. J. , vol.89 , pp. 2911-2926
    • Van Buren, V.1
  • 72
    • 0025103402 scopus 로고
    • Microtubule dynamic instability: numerical simulation of microtubule transition properties using a Lateral Cap model
    • Bayley P.M., et al. Microtubule dynamic instability: numerical simulation of microtubule transition properties using a Lateral Cap model. J. Cell Sci. 1990, 95:33-48.
    • (1990) J. Cell Sci. , vol.95 , pp. 33-48
    • Bayley, P.M.1
  • 73
    • 0027199079 scopus 로고
    • Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice
    • Martin S.R., et al. Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice. Biophys. J. 1993, 65:578-596.
    • (1993) Biophys. J. , vol.65 , pp. 578-596
    • Martin, S.R.1
  • 74
    • 79961045965 scopus 로고    scopus 로고
    • Mean-field study of the role of lateral cracks in microtubule dynamics
    • Margolin G., et al. Mean-field study of the role of lateral cracks in microtubule dynamics. Phys. Rev. E 2011, 83:041905.
    • (2011) Phys. Rev. E , vol.83 , pp. 041905
    • Margolin, G.1
  • 75
    • 0012248353 scopus 로고
    • Monte Carlo study of the GTP cap in a five-start helix model of a microtubule
    • Chen Y.D., Hill T.L. Monte Carlo study of the GTP cap in a five-start helix model of a microtubule. Proc. Natl. Acad. Sci. U.S.A. 1985, 82:1131-1135.
    • (1985) Proc. Natl. Acad. Sci. U.S.A. , vol.82 , pp. 1131-1135
    • Chen, Y.D.1    Hill, T.L.2
  • 76
    • 4243872642 scopus 로고    scopus 로고
    • Microtubule dynamics: caps, catastrophes, and coupled hydrolysis
    • Flyvbjerg H., et al. Microtubule dynamics: caps, catastrophes, and coupled hydrolysis. Phys. Rev. E 1996, 54:5538-5560.
    • (1996) Phys. Rev. E , vol.54 , pp. 5538-5560
    • Flyvbjerg, H.1
  • 77
    • 84885112509 scopus 로고    scopus 로고
    • Microtubule catastrophe from protofilament dynamics
    • Jemseena V., Gopalakrishnan M. Microtubule catastrophe from protofilament dynamics. Phys. Rev. E 2013, 88:032717.
    • (2013) Phys. Rev. E , vol.88 , pp. 032717
    • Jemseena, V.1    Gopalakrishnan, M.2
  • 78
    • 84926442297 scopus 로고    scopus 로고
    • Dynamic instability 30 years later: complexities in microtubule growth and catastrophe
    • Brouhard G.J. Dynamic instability 30 years later: complexities in microtubule growth and catastrophe. Mol. Biol. Cell 2015, 26:1207-1210.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 1207-1210
    • Brouhard, G.J.1
  • 79
    • 0032495513 scopus 로고    scopus 로고
    • Structure of the alpha beta tubulin dimer by electron crystallography
    • Nogales E., et al. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 1998, 391:199-203.
    • (1998) Nature , vol.391 , pp. 199-203
    • Nogales, E.1
  • 80
    • 0037197966 scopus 로고    scopus 로고
    • Estimates of lateral and longitudinal bond energies within the microtubule lattice
    • Van Buren V., et al. Estimates of lateral and longitudinal bond energies within the microtubule lattice. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:6035-6040.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 6035-6040
    • Van Buren, V.1
  • 81
    • 33750452317 scopus 로고    scopus 로고
    • Analysis of a mesoscopic stochastic model of microtubule dynamic instability
    • Margolin G., et al. Analysis of a mesoscopic stochastic model of microtubule dynamic instability. Phys. Rev. E 2006, 74:041920.
    • (2006) Phys. Rev. E , vol.74 , pp. 041920
    • Margolin, G.1
  • 82
    • 84863162345 scopus 로고    scopus 로고
    • The mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model
    • Margolin G., et al. The mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model. Mol. Biol. Cell 2012, 23:642-656.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 642-656
    • Margolin, G.1
  • 83
    • 80052210135 scopus 로고    scopus 로고
    • Kif18B interacts with EB1 and controls astral microtubule length during mitosis
    • Stout J.R., et al. Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol. Biol. Cell 2011, 22:3070-3080.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 3070-3080
    • Stout, J.R.1
  • 84
    • 0028887847 scopus 로고
    • Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis
    • Wordeman L., Mitchison T.J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 1995, 128:95-105.
    • (1995) J. Cell Biol. , vol.128 , pp. 95-105
    • Wordeman, L.1    Mitchison, T.J.2
  • 85
    • 84872002781 scopus 로고    scopus 로고
    • Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and sentin
    • Li W., et al. Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and sentin. J. Cell Biol. 2012, 199:849-862.
    • (2012) J. Cell Biol. , vol.199 , pp. 849-862
    • Li, W.1
  • 86
    • 64749115790 scopus 로고    scopus 로고
    • Mammalian end binding proteins control persistent microtubule growth
    • Komarova Y., et al. Mammalian end binding proteins control persistent microtubule growth. J. Cell Biol. 2009, 184:691-706.
    • (2009) J. Cell Biol. , vol.184 , pp. 691-706
    • Komarova, Y.1
  • 87
    • 84939265872 scopus 로고    scopus 로고
    • Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins
    • Zhang R., et al. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 2015, 162:849-859.
    • (2015) Cell , vol.162 , pp. 849-859
    • Zhang, R.1
  • 88
    • 70449574092 scopus 로고    scopus 로고
    • EB1 recognizes the nucleotide state of tubulin in the microtubule lattice
    • Zanic M., et al. EB1 recognizes the nucleotide state of tubulin in the microtubule lattice. PLoS ONE 2009, 4:e7585.
    • (2009) PLoS ONE , vol.4 , pp. e7585
    • Zanic, M.1
  • 89
    • 79952760876 scopus 로고    scopus 로고
    • GTPgammaS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs)
    • Maurer S.P., et al. GTPgammaS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs). Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3988-3993.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 3988-3993
    • Maurer, S.P.1
  • 90
    • 84859736946 scopus 로고    scopus 로고
    • EBs recognize a nucleotide-dependent structural cap at growing microtubule ends
    • Maurer S.P., et al. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell 2012, 149:371-382.
    • (2012) Cell , vol.149 , pp. 371-382
    • Maurer, S.P.1
  • 91
    • 84894334053 scopus 로고    scopus 로고
    • EB1 accelerates two conformational transitions important for microtubule maturation and dynamics
    • Maurer S.P., et al. EB1 accelerates two conformational transitions important for microtubule maturation and dynamics. Curr. Biol. 2014, 24:372-384.
    • (2014) Curr. Biol. , vol.24 , pp. 372-384
    • Maurer, S.P.1
  • 92
    • 84908338443 scopus 로고    scopus 로고
    • Doublecortin recognizes the longitudinal curvature of the microtubule end and lattice
    • Bechstedt S., et al. Doublecortin recognizes the longitudinal curvature of the microtubule end and lattice. Curr. Biol. 2014, 24:2366-2375.
    • (2014) Curr. Biol. , vol.24 , pp. 2366-2375
    • Bechstedt, S.1
  • 93
    • 0027075124 scopus 로고
    • Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP
    • Hyman A., et al. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 1992, 3:1155-1167.
    • (1992) Mol. Biol. Cell , vol.3 , pp. 1155-1167
    • Hyman, A.1
  • 94
    • 0008538685 scopus 로고
    • A protein factor essential for microtubule assembly
    • Weingarten M.D., et al. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. U.S.A. 1975, 72:1858-1862.
    • (1975) Proc. Natl. Acad. Sci. U.S.A. , vol.72 , pp. 1858-1862
    • Weingarten, M.D.1
  • 95
    • 0023589342 scopus 로고
    • A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end
    • Gard D.L., Kirschner M.W. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J. Cell Biol. 1987, 105:2203-2215.
    • (1987) J. Cell Biol. , vol.105 , pp. 2203-2215
    • Gard, D.L.1    Kirschner, M.W.2
  • 96
    • 0030728492 scopus 로고    scopus 로고
    • Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body
    • Wang P.J., Huffaker T.C. Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 1997, 139:1271-1280.
    • (1997) J. Cell Biol. , vol.139 , pp. 1271-1280
    • Wang, P.J.1    Huffaker, T.C.2
  • 97
    • 0029066006 scopus 로고
    • APC binds to the novel protein EB1
    • Su L.K., et al. APC binds to the novel protein EB1. Cancer Res. 1995, 55:2972-2977.
    • (1995) Cancer Res. , vol.55 , pp. 2972-2977
    • Su, L.K.1
  • 98
    • 0024509921 scopus 로고
    • Intracellular substrates for extracellular signaling. Characterization of a ubiquitous, neuron-enriched phosphoprotein (stathmin)
    • Sobel A., et al. Intracellular substrates for extracellular signaling. Characterization of a ubiquitous, neuron-enriched phosphoprotein (stathmin). J. Biol. Chem. 1989, 264:3765-3772.
    • (1989) J. Biol. Chem. , vol.264 , pp. 3765-3772
    • Sobel, A.1
  • 99
    • 0028597069 scopus 로고
    • STU1, a suppressor of a β-tubulin mutation, encodes a novel and essential component of the yeast mitotic spindle
    • Pasqualone D., Huffaker T.C. STU1, a suppressor of a β-tubulin mutation, encodes a novel and essential component of the yeast mitotic spindle. J. Cell Biol. 1994, 127:1973-1984.
    • (1994) J. Cell Biol. , vol.127 , pp. 1973-1984
    • Pasqualone, D.1    Huffaker, T.C.2
  • 100
    • 0026767250 scopus 로고
    • Kinesin-related proteins required for assembly of the mitotic spindle
    • Roof D.M., et al. Kinesin-related proteins required for assembly of the mitotic spindle. J. Cell Biol. 1992, 118:95-108.
    • (1992) J. Cell Biol. , vol.118 , pp. 95-108
    • Roof, D.M.1
  • 101
    • 17444444915 scopus 로고    scopus 로고
    • A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome
    • Des Portes V., et al. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 1998, 92:51-61.
    • (1998) Cell , vol.92 , pp. 51-61
    • Des Portes, V.1
  • 102
    • 33749348508 scopus 로고    scopus 로고
    • Distinct roles of doublecortin modulating the microtubule cytoskeleton
    • Moores C.A., et al. Distinct roles of doublecortin modulating the microtubule cytoskeleton. EMBO J. 2006, 25:4448-4457.
    • (2006) EMBO J. , vol.25 , pp. 4448-4457
    • Moores, C.A.1
  • 103
    • 0030928162 scopus 로고    scopus 로고
    • Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration
    • DeZwaan T.M., et al. Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J. Cell Biol. 1997, 138:1023-1040.
    • (1997) J. Cell Biol. , vol.138 , pp. 1023-1040
    • DeZwaan, T.M.1
  • 104
    • 19544368286 scopus 로고    scopus 로고
    • MS-KIF18A, new kinesin; structure and cellular expression
    • Luboshits G., Benayahu D. MS-KIF18A, new kinesin; structure and cellular expression. Gene 2005, 351:19-28.
    • (2005) Gene , vol.351 , pp. 19-28
    • Luboshits, G.1    Benayahu, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.