메뉴 건너뛰기




Volumn 184, Issue , 2016, Pages 131-144

An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease

Author keywords

Feature selection; Kernel extreme learning machine; Medical diagnosis; Parkinson's disease

Indexed keywords

CLASSIFICATION (OF INFORMATION); DIAGNOSIS; FEATURE EXTRACTION; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; NEURAL NETWORKS; NEURODEGENERATIVE DISEASES;

EID: 84950341558     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.07.138     Document Type: Article
Times cited : (233)

References (48)
  • 1
    • 33745919520 scopus 로고    scopus 로고
    • Epidemiology of Parkinson's disease
    • de Lau L.M.L., Breteler M.M.B. Epidemiology of Parkinson's disease. Lancet Neurol. 2006, 5(6):525-535.
    • (2006) Lancet Neurol. , vol.5 , Issue.6 , pp. 525-535
    • de Lau, L.M.L.1    Breteler, M.M.B.2
  • 2
    • 0037675042 scopus 로고    scopus 로고
    • Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity
    • Van Den Eeden S.K., et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 2003, 157(11):1015-1022.
    • (2003) Am. J. Epidemiol. , vol.157 , Issue.11 , pp. 1015-1022
    • Van Den Eeden, S.K.1
  • 3
    • 33846572874 scopus 로고    scopus 로고
    • Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030
    • Dorsey E., et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007, 68(5):384-386.
    • (2007) Neurology , vol.68 , Issue.5 , pp. 384-386
    • Dorsey, E.1
  • 4
    • 33847105184 scopus 로고    scopus 로고
    • Advances in the treatment of Parkinson's disease
    • Singh N., Pillay V., Choonara Y.E. Advances in the treatment of Parkinson's disease. Prog. Neurobiol. 2007, 81(1):29-44.
    • (2007) Prog. Neurobiol. , vol.81 , Issue.1 , pp. 29-44
    • Singh, N.1    Pillay, V.2    Choonara, Y.E.3
  • 5
    • 41149163183 scopus 로고    scopus 로고
    • Parkinson's disease: clinical features and diagnosis
    • Jankovic J. Parkinson's disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79(4):368-376.
    • (2008) J. Neurol. Neurosurg. Psychiatry , vol.79 , Issue.4 , pp. 368-376
    • Jankovic, J.1
  • 6
    • 84865997692 scopus 로고    scopus 로고
    • Clinical approach to Parkinson's disease: features, diagnosis, and principles of management
    • Massano J., Bhatia K.P. Clinical approach to Parkinson's disease: features, diagnosis, and principles of management. Cold Spring Harb. Perspect. Med. 2012, 2:6.
    • (2012) Cold Spring Harb. Perspect. Med. , vol.2 , pp. 6
    • Massano, J.1    Bhatia, K.P.2
  • 7
    • 0032293604 scopus 로고    scopus 로고
    • Speech impairment in a large sample of patients with Parkinson's disease
    • Ho A.K., et al. Speech impairment in a large sample of patients with Parkinson's disease. Behav. Neurol. 1998, 11:131-138.
    • (1998) Behav. Neurol. , vol.11 , pp. 131-138
    • Ho, A.K.1
  • 8
    • 4544366790 scopus 로고    scopus 로고
    • Variability in fundamental frequency during speech in prodromal and incipient Parkinson's disease: a longitudinal case study
    • Harel B., Cannizzaro M., Snyder P.J. Variability in fundamental frequency during speech in prodromal and incipient Parkinson's disease: a longitudinal case study. Brain Cognit. 2004, 56(1):24-29.
    • (2004) Brain Cognit. , vol.56 , Issue.1 , pp. 24-29
    • Harel, B.1    Cannizzaro, M.2    Snyder, P.J.3
  • 10
    • 84860547691 scopus 로고    scopus 로고
    • Suitability of dysphonia measurements for telemonitoring of Parkinson's disease
    • Little M.A., et al. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Trans. Biomed. Eng. 2009, 56(4):1015-1022.
    • (2009) IEEE Trans. Biomed. Eng. , vol.56 , Issue.4 , pp. 1015-1022
    • Little, M.A.1
  • 11
    • 84860386097 scopus 로고    scopus 로고
    • Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease
    • Tsanas A., et al. Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease. IEEE Trans. Biomed. Eng. 2012, 59(5):1264-1271.
    • (2012) IEEE Trans. Biomed. Eng. , vol.59 , Issue.5 , pp. 1264-1271
    • Tsanas, A.1
  • 12
    • 71749106281 scopus 로고    scopus 로고
    • A comparison of multiple classification methods for diagnosis of Parkinson disease
    • Das R. A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst. Appl. 2010, 37(2):1568-1572.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.2 , pp. 1568-1572
    • Das, R.1
  • 13
    • 79957987118 scopus 로고    scopus 로고
    • A parallel neural network approach to prediction of Parkinson's Disease
    • AStröm F., Koker R. A parallel neural network approach to prediction of Parkinson's Disease. Expert Syst. Appl. 2011, 38(10):12470-12474.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.10 , pp. 12470-12474
    • AStröm, F.1    Koker, R.2
  • 14
    • 77956061076 scopus 로고    scopus 로고
    • Telediagnosis of Parkinson's disease using measurements of dysphonia
    • Sakar C.O., Kursun O. Telediagnosis of Parkinson's disease using measurements of dysphonia. J. Med. Syst. 2010, 34(4):1-9.
    • (2010) J. Med. Syst. , vol.34 , Issue.4 , pp. 1-9
    • Sakar, C.O.1    Kursun, O.2
  • 15
    • 79956012303 scopus 로고    scopus 로고
    • A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets
    • Li D.C., Liu C.W., Hu S.C. A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif. Intell. Med. 2011, 52(1):45-52.
    • (2011) Artif. Intell. Med. , vol.52 , Issue.1 , pp. 45-52
    • Li, D.C.1    Liu, C.W.2    Hu, S.C.3
  • 16
    • 70349425847 scopus 로고    scopus 로고
    • Nonlinear models using Dirichlet process mixtures
    • Shahbaba B., Neal R. Nonlinear models using Dirichlet process mixtures. J. Mach. Learn. Res. 2009, 10:1829-1850.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1829-1850
    • Shahbaba, B.1    Neal, R.2
  • 17
    • 77957788560 scopus 로고    scopus 로고
    • Multiclass relevance vector machines: sparsity and accuracy
    • Psorakis I., Damoulas T., Girolami M.A. Multiclass relevance vector machines: sparsity and accuracy. IEEE Trans. Neural Netw. 2010, 21(10):1588-1598.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.10 , pp. 1588-1598
    • Psorakis, I.1    Damoulas, T.2    Girolami, M.A.3
  • 18
    • 77954652467 scopus 로고    scopus 로고
    • Advances in detecting Parkinson's disease
    • Guo P.F., Bhattacharya P., Kharma N. Advances in detecting Parkinson's disease. Med. Biom. 2010, 306-314.
    • (2010) Med. Biom. , pp. 306-314
    • Guo, P.F.1    Bhattacharya, P.2    Kharma, N.3
  • 19
    • 78650710674 scopus 로고    scopus 로고
    • Feature selection using fuzzy entropy measures with similarity classifier
    • Luukka P. Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst. Appl. 2011, 38(4):4600-4607.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.4 , pp. 4600-4607
    • Luukka, P.1
  • 20
    • 80655127861 scopus 로고    scopus 로고
    • Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms
    • Ozcift A., Gulten A. Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput. Methods Programs Biomed. 2011, 104(3):443-451.
    • (2011) Comput. Methods Programs Biomed. , vol.104 , Issue.3 , pp. 443-451
    • Ozcift, A.1    Gulten, A.2
  • 22
    • 84857215855 scopus 로고    scopus 로고
    • Classification of Parkinson's disease using feature weighting method on the basis of fuzzy C-means clustering
    • Polat K. Classification of Parkinson's disease using feature weighting method on the basis of fuzzy C-means clustering. Int. J. Syst. Sci. 2012, 43(4):597-609.
    • (2012) Int. J. Syst. Sci. , vol.43 , Issue.4 , pp. 597-609
    • Polat, K.1
  • 23
    • 84866123932 scopus 로고    scopus 로고
    • An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach
    • Chen H.-L., et al. An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach. Expert Syst. Appl. 2013, 40(1):263-271.
    • (2013) Expert Syst. Appl. , vol.40 , Issue.1 , pp. 263-271
    • Chen, H.-L.1
  • 24
    • 85027954695 scopus 로고    scopus 로고
    • Effective detection of Parkinson's disease using an adaptive fuzzy k-nearest neighbor approach
    • Zuo W.-L., et al. Effective detection of Parkinson's disease using an adaptive fuzzy k-nearest neighbor approach. Biomed. Signal Process. Control 2013, 8(4):364-373.
    • (2013) Biomed. Signal Process. Control , vol.8 , Issue.4 , pp. 364-373
    • Zuo, W.-L.1
  • 25
    • 84894268248 scopus 로고    scopus 로고
    • A new hybrid intelligent system for accurate detection of Parkinson's disease
    • Hariharan M., Polat K., Sindhu R. A new hybrid intelligent system for accurate detection of Parkinson's disease. Comput. Methods Programs Biomed. 2014, 113(3):904-913.
    • (2014) Comput. Methods Programs Biomed. , vol.113 , Issue.3 , pp. 904-913
    • Hariharan, M.1    Polat, K.2    Sindhu, R.3
  • 26
    • 84918809566 scopus 로고    scopus 로고
    • An ensemble of k-nearest neighbours algorithm for detection of Parkinson's disease
    • Gok M. An ensemble of k-nearest neighbours algorithm for detection of Parkinson's disease. Int. J. Syst. Sci. 2015, 46(6):1108-1112.
    • (2015) Int. J. Syst. Sci. , vol.46 , Issue.6 , pp. 1108-1112
    • Gok, M.1
  • 27
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 28
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Huang G.B., et al. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man. Cybern. Part B-Cybern. 2012, 42(2):513-529.
    • (2012) IEEE Trans. Syst. Man. Cybern. Part B-Cybern. , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.B.1
  • 29
    • 84880397408 scopus 로고    scopus 로고
    • Kernel-based extreme learning machine for remote-sensing image classification
    • Pal M., Maxwell A.E., Warner T.A. Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens. Lett. 2013, 4(9):853-862.
    • (2013) Remote Sens. Lett. , vol.4 , Issue.9 , pp. 853-862
    • Pal, M.1    Maxwell, A.E.2    Warner, T.A.3
  • 31
    • 84867297688 scopus 로고    scopus 로고
    • A computer aided diagnosis system for thyroid disease using extreme learning machine
    • Li L.N., et al. A computer aided diagnosis system for thyroid disease using extreme learning machine. J. Med. Syst. 2012, 36(5):3327-3337.
    • (2012) J. Med. Syst. , vol.36 , Issue.5 , pp. 3327-3337
    • Li, L.N.1
  • 32
    • 84918810095 scopus 로고    scopus 로고
    • A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection
    • Liu T., et al. A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection. Int. J. Syst. Sci. 2015, 46(5):919-931.
    • (2015) Int. J. Syst. Sci. , vol.46 , Issue.5 , pp. 919-931
    • Liu, T.1
  • 33
    • 84923046261 scopus 로고    scopus 로고
    • An efficient machine learning approach for diagnosis of paraquat-poisoned patients
    • Hu L., et al. An efficient machine learning approach for diagnosis of paraquat-poisoned patients. Comput. Biol. Med. 2015, 59(0):116-124.
    • (2015) Comput. Biol. Med. , vol.59 , pp. 116-124
    • Hu, L.1
  • 35
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang G.B., Babri H.A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw. 1998, 9(1):224-229.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.B.1    Babri, H.A.2
  • 36
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feedforward networks
    • Huang G.B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003, 14(2):274-281.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.B.1
  • 37
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17(4):879-892.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 38
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8):1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 42
    • 84860547691 scopus 로고    scopus 로고
    • Suitability of dysphonia measurements for telemonitoring of Parkinson' disease
    • Little M.A., et al. Suitability of dysphonia measurements for telemonitoring of Parkinson' disease. IEEE Trans. Biomed. Eng. 2009.
    • (2009) IEEE Trans. Biomed. Eng.
    • Little, M.A.1
  • 45
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Montreal, Que., Morgan Kaufmann, Los Altos, CA, Montreal, Que., Morgan Kaufmann, Los Altos, CA, C.S. Mellish (Ed.), C.S. Mellish (Ed.)
    • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings IJCAI-95. Proceedings IJCAI-95 1995, 1137-1143. Montreal, Que., Morgan Kaufmann, Los Altos, CA, Montreal, Que., Morgan Kaufmann, Los Altos, CA. C.S. Mellish (Ed.), C.S. Mellish (Ed.).
    • (1995) Proceedings IJCAI-95. Proceedings IJCAI-95 , pp. 1137-1143
    • Kohavi, R.1
  • 46
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27(8):861-874.
    • (2006) Pattern Recognit. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 47
    • 26944454497 scopus 로고    scopus 로고
    • ROC graphs: notes and practical considerations for researchers
    • Fawcett T. ROC graphs: notes and practical considerations for researchers. Mach. Learn. 2004, 31:1-38.
    • (2004) Mach. Learn. , vol.31 , pp. 1-38
    • Fawcett, T.1
  • 48
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei
    • C.W. Hsu, C.C. Chang, C.J. Lin, A practical guide to support vector classification, Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 2003, available at 〈〉. http://www.csie.ntu.edu.tw/cjlin/libsvm/.
    • (2003)
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.