-
1
-
-
67650725610
-
Clinical outcome of paraquat poisoning
-
Yoon S.C. Clinical outcome of paraquat poisoning. Korean J. Intern. Med. 2009, 24(2):93-94.
-
(2009)
Korean J. Intern. Med.
, vol.24
, Issue.2
, pp. 93-94
-
-
Yoon, S.C.1
-
2
-
-
0033010714
-
A prospective clinical trial of pulse therapy with glucocorticoid and cyclophosphamide in moderate to severe paraquat-poisoned patients
-
Lin J.L., et al. A prospective clinical trial of pulse therapy with glucocorticoid and cyclophosphamide in moderate to severe paraquat-poisoned patients. Am. J. Respir. Crit. Care Med. 1999, 159(2):357-360.
-
(1999)
Am. J. Respir. Crit. Care Med.
, vol.159
, Issue.2
, pp. 357-360
-
-
Lin, J.L.1
-
3
-
-
41349098828
-
Paraquat induces apoptosis in human lymphocytes: protective and rescue effects of glucose, cannabinoids and insulin-like growth factor-1
-
Rio M.J., Velez-Pardo C. Paraquat induces apoptosis in human lymphocytes: protective and rescue effects of glucose, cannabinoids and insulin-like growth factor-1. Growth Factors 2008, 26(1):49-60.
-
(2008)
Growth Factors
, vol.26
, Issue.1
, pp. 49-60
-
-
Rio, M.J.1
Velez-Pardo, C.2
-
4
-
-
84868087242
-
Early hemoperfusion may improve survival of severely Paraquat-poisoned patients
-
Hsu C.W., et al. Early hemoperfusion may improve survival of severely Paraquat-poisoned patients. PLoS One 2012, 7(10):e48397.
-
(2012)
PLoS One
, vol.7
, Issue.10
, pp. e48397
-
-
Hsu, C.W.1
-
5
-
-
0036144216
-
Failure of continuous venovenous hemofiltration to prevent death in paraquat poisoning
-
Koo J.R., et al. Failure of continuous venovenous hemofiltration to prevent death in paraquat poisoning. Am. J. Kidney Dis. 2002, 39(1):55-59.
-
(2002)
Am. J. Kidney Dis.
, vol.39
, Issue.1
, pp. 55-59
-
-
Koo, J.R.1
-
6
-
-
79957837470
-
An improved approach for extraction and high-performance liquid chromatography analysis of paraquat in human plasma
-
Zou Y., et al. An improved approach for extraction and high-performance liquid chromatography analysis of paraquat in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879(20):1809-1812.
-
(2011)
J. Chromatogr. B Anal. Technol. Biomed. Life Sci.
, vol.879
, Issue.20
, pp. 1809-1812
-
-
Zou, Y.1
-
7
-
-
84900302739
-
Addition of immunosuppressive treatment to hemoperfusion is associated with improved survival after paraquat poisoning: a nationwide study
-
Wu W.P., et al. Addition of immunosuppressive treatment to hemoperfusion is associated with improved survival after paraquat poisoning: a nationwide study. PLoS One 2014, 9(1):e87568.
-
(2014)
PLoS One
, vol.9
, Issue.1
, pp. e87568
-
-
Wu, W.P.1
-
8
-
-
0025312550
-
Toxicokinetics of paraquat in humans
-
Houze P., et al. Toxicokinetics of paraquat in humans. Hum. Exp. Toxicol. 1990, 9(1):5-12.
-
(1990)
Hum. Exp. Toxicol.
, vol.9
, Issue.1
, pp. 5-12
-
-
Houze, P.1
-
9
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
10
-
-
34547992213
-
Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis
-
Zhang R., et al. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinf. 2007, 4(3):485-494.
-
(2007)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.4
, Issue.3
, pp. 485-494
-
-
Zhang, R.1
-
11
-
-
58549103087
-
No-reference image quality assessment using modified extreme learning machine classifier
-
Suresh S., Venkatesh Babu R., Kim H.J. No-reference image quality assessment using modified extreme learning machine classifier. Appl. Soft Comput. 2009, 9(2):541-552.
-
(2009)
Appl. Soft Comput.
, vol.9
, Issue.2
, pp. 541-552
-
-
Suresh, S.1
Venkatesh Babu, R.2
Kim, H.J.3
-
12
-
-
79958778333
-
Human face recognition based on multidimensional PCA and extreme learning machine
-
Mohammed A.A., et al. Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit. 2011, 44(10-11):2588-2597.
-
(2011)
Pattern Recognit.
, vol.44
, Issue.10-11
, pp. 2588-2597
-
-
Mohammed, A.A.1
-
13
-
-
70449409294
-
Extreme-learning-machine-based land cover classification
-
Pal M. Extreme-learning-machine-based land cover classification. Int. J. Remote. Sens. 2009, 30(14):3835-3841.
-
(2009)
Int. J. Remote. Sens.
, vol.30
, Issue.14
, pp. 3835-3841
-
-
Pal, M.1
-
14
-
-
84893640041
-
Extreme learning machines for soybean classification in remote sensing hyperspectral images
-
Moreno R., et al. Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 2014, 128:207-216.
-
(2014)
Neurocomputing
, vol.128
, pp. 207-216
-
-
Moreno, R.1
-
15
-
-
34249753618
-
Support-vector networks
-
Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20(3):273-297.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
16
-
-
24344458137
-
Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
-
Peng H., Long F., Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8):1226-1238.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
17
-
-
10944272650
-
Extreme learning machine: a new learning scheme of feedforward neural networks
-
Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: a new learning scheme of feedforward neural networks. IEEE Int. Jt. Conf. Neural Netw. 2004, 985-990.
-
(2004)
IEEE Int. Jt. Conf. Neural Netw.
, pp. 985-990
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
18
-
-
0031673055
-
Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
-
Huang G.B., Babri H.A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw. 1998, 9(1):224-229.
-
(1998)
IEEE Trans. Neural Netw.
, vol.9
, Issue.1
, pp. 224-229
-
-
Huang, G.B.1
Babri, H.A.2
-
19
-
-
0037361264
-
Learning capability and storage capacity of two-hidden-layer feedforward networks
-
Huang G.B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003, 14(2):274-281.
-
(2003)
IEEE Trans. Neural Netw.
, vol.14
, Issue.2
, pp. 274-281
-
-
Huang, G.B.1
-
20
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17(4):879-892.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.B.1
Chen, L.2
Siew, C.K.3
-
21
-
-
84903377294
-
An evaluation of acute hydrogen sulfide poisoning in rats through serum metabolomics based on gas chromatography-mass spectrometry
-
Zhang M., et al. An evaluation of acute hydrogen sulfide poisoning in rats through serum metabolomics based on gas chromatography-mass spectrometry. Chem. Pharm. Bull. (Tokyo) 2014, 62(6):505-507.
-
(2014)
Chem. Pharm. Bull. (Tokyo)
, vol.62
, Issue.6
, pp. 505-507
-
-
Zhang, M.1
-
23
-
-
27144463192
-
On comparing classifiers: pitfalls to avoid and a recommended approach
-
Salzberg S.L. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min. Knowl. Discov. 1997, 1(3):317-328.
-
(1997)
Data Min. Knowl. Discov.
, vol.1
, Issue.3
, pp. 317-328
-
-
Salzberg, S.L.1
-
24
-
-
77957226516
-
A bias correction for the minimum error rate in cross-validation
-
Tibshirani R.J., Tibshirani R. A bias correction for the minimum error rate in cross-validation. Ann. Appl. Stat. 2009, 822-829.
-
(2009)
Ann. Appl. Stat.
, pp. 822-829
-
-
Tibshirani, R.J.1
Tibshirani, R.2
-
25
-
-
84911394994
-
Bias correction for selecting the minimal-error classifier from many machine learning models
-
Ding Y., et al. Bias correction for selecting the minimal-error classifier from many machine learning models. Bioinformatics 2014, 30(22):3152-3158.
-
(2014)
Bioinformatics
, vol.30
, Issue.22
, pp. 3152-3158
-
-
Ding, Y.1
-
26
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27(8):861-874.
-
(2006)
Pattern Recognit. Lett.
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
27
-
-
26944454497
-
ROC graphs: notes and practical considerations for researchers
-
Fawcett T. ROC graphs: notes and practical considerations for researchers. Mach. Learn. 2004, 31:1-38.
-
(2004)
Mach. Learn.
, vol.31
, pp. 1-38
-
-
Fawcett, T.1
-
28
-
-
4944228528
-
A practical guide to support vector classification, Technical report
-
Department of Computer Science and Information Engineering, National Taiwan University, Taipei
-
Hsu, C.W., C.C. Chang, C.J. Lin, A practical guide to support vector classification, Technical report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 2003, Available at . http://www.csie.ntu.edu.tw/cjlin/libsvm/.
-
(2003)
-
-
Hsu, C.W.1
Chang, C.C.2
Lin, C.J.3
|