메뉴 건너뛰기




Volumn 59, Issue , 2015, Pages 116-124

An efficient machine learning approach for diagnosis of paraquat-poisoned patients

Author keywords

Extreme learning machine; Medical diagnosis; Paraquat; Poison

Indexed keywords

ARTIFICIAL INTELLIGENCE; BLOOD; GAS CHROMATOGRAPHY; HERBICIDES; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MASS SPECTROMETRY;

EID: 84923046261     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2015.02.003     Document Type: Article
Times cited : (138)

References (28)
  • 1
    • 67650725610 scopus 로고    scopus 로고
    • Clinical outcome of paraquat poisoning
    • Yoon S.C. Clinical outcome of paraquat poisoning. Korean J. Intern. Med. 2009, 24(2):93-94.
    • (2009) Korean J. Intern. Med. , vol.24 , Issue.2 , pp. 93-94
    • Yoon, S.C.1
  • 2
    • 0033010714 scopus 로고    scopus 로고
    • A prospective clinical trial of pulse therapy with glucocorticoid and cyclophosphamide in moderate to severe paraquat-poisoned patients
    • Lin J.L., et al. A prospective clinical trial of pulse therapy with glucocorticoid and cyclophosphamide in moderate to severe paraquat-poisoned patients. Am. J. Respir. Crit. Care Med. 1999, 159(2):357-360.
    • (1999) Am. J. Respir. Crit. Care Med. , vol.159 , Issue.2 , pp. 357-360
    • Lin, J.L.1
  • 3
    • 41349098828 scopus 로고    scopus 로고
    • Paraquat induces apoptosis in human lymphocytes: protective and rescue effects of glucose, cannabinoids and insulin-like growth factor-1
    • Rio M.J., Velez-Pardo C. Paraquat induces apoptosis in human lymphocytes: protective and rescue effects of glucose, cannabinoids and insulin-like growth factor-1. Growth Factors 2008, 26(1):49-60.
    • (2008) Growth Factors , vol.26 , Issue.1 , pp. 49-60
    • Rio, M.J.1    Velez-Pardo, C.2
  • 4
    • 84868087242 scopus 로고    scopus 로고
    • Early hemoperfusion may improve survival of severely Paraquat-poisoned patients
    • Hsu C.W., et al. Early hemoperfusion may improve survival of severely Paraquat-poisoned patients. PLoS One 2012, 7(10):e48397.
    • (2012) PLoS One , vol.7 , Issue.10 , pp. e48397
    • Hsu, C.W.1
  • 5
    • 0036144216 scopus 로고    scopus 로고
    • Failure of continuous venovenous hemofiltration to prevent death in paraquat poisoning
    • Koo J.R., et al. Failure of continuous venovenous hemofiltration to prevent death in paraquat poisoning. Am. J. Kidney Dis. 2002, 39(1):55-59.
    • (2002) Am. J. Kidney Dis. , vol.39 , Issue.1 , pp. 55-59
    • Koo, J.R.1
  • 6
    • 79957837470 scopus 로고    scopus 로고
    • An improved approach for extraction and high-performance liquid chromatography analysis of paraquat in human plasma
    • Zou Y., et al. An improved approach for extraction and high-performance liquid chromatography analysis of paraquat in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879(20):1809-1812.
    • (2011) J. Chromatogr. B Anal. Technol. Biomed. Life Sci. , vol.879 , Issue.20 , pp. 1809-1812
    • Zou, Y.1
  • 7
    • 84900302739 scopus 로고    scopus 로고
    • Addition of immunosuppressive treatment to hemoperfusion is associated with improved survival after paraquat poisoning: a nationwide study
    • Wu W.P., et al. Addition of immunosuppressive treatment to hemoperfusion is associated with improved survival after paraquat poisoning: a nationwide study. PLoS One 2014, 9(1):e87568.
    • (2014) PLoS One , vol.9 , Issue.1 , pp. e87568
    • Wu, W.P.1
  • 8
    • 0025312550 scopus 로고
    • Toxicokinetics of paraquat in humans
    • Houze P., et al. Toxicokinetics of paraquat in humans. Hum. Exp. Toxicol. 1990, 9(1):5-12.
    • (1990) Hum. Exp. Toxicol. , vol.9 , Issue.1 , pp. 5-12
    • Houze, P.1
  • 9
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 10
    • 34547992213 scopus 로고    scopus 로고
    • Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis
    • Zhang R., et al. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinf. 2007, 4(3):485-494.
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.4 , Issue.3 , pp. 485-494
    • Zhang, R.1
  • 11
    • 58549103087 scopus 로고    scopus 로고
    • No-reference image quality assessment using modified extreme learning machine classifier
    • Suresh S., Venkatesh Babu R., Kim H.J. No-reference image quality assessment using modified extreme learning machine classifier. Appl. Soft Comput. 2009, 9(2):541-552.
    • (2009) Appl. Soft Comput. , vol.9 , Issue.2 , pp. 541-552
    • Suresh, S.1    Venkatesh Babu, R.2    Kim, H.J.3
  • 12
    • 79958778333 scopus 로고    scopus 로고
    • Human face recognition based on multidimensional PCA and extreme learning machine
    • Mohammed A.A., et al. Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit. 2011, 44(10-11):2588-2597.
    • (2011) Pattern Recognit. , vol.44 , Issue.10-11 , pp. 2588-2597
    • Mohammed, A.A.1
  • 13
    • 70449409294 scopus 로고    scopus 로고
    • Extreme-learning-machine-based land cover classification
    • Pal M. Extreme-learning-machine-based land cover classification. Int. J. Remote. Sens. 2009, 30(14):3835-3841.
    • (2009) Int. J. Remote. Sens. , vol.30 , Issue.14 , pp. 3835-3841
    • Pal, M.1
  • 14
    • 84893640041 scopus 로고    scopus 로고
    • Extreme learning machines for soybean classification in remote sensing hyperspectral images
    • Moreno R., et al. Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 2014, 128:207-216.
    • (2014) Neurocomputing , vol.128 , pp. 207-216
    • Moreno, R.1
  • 15
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20(3):273-297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 16
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8):1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 17
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: a new learning scheme of feedforward neural networks. IEEE Int. Jt. Conf. Neural Netw. 2004, 985-990.
    • (2004) IEEE Int. Jt. Conf. Neural Netw. , pp. 985-990
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 18
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang G.B., Babri H.A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw. 1998, 9(1):224-229.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.B.1    Babri, H.A.2
  • 19
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feedforward networks
    • Huang G.B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003, 14(2):274-281.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.B.1
  • 20
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17(4):879-892.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 21
    • 84903377294 scopus 로고    scopus 로고
    • An evaluation of acute hydrogen sulfide poisoning in rats through serum metabolomics based on gas chromatography-mass spectrometry
    • Zhang M., et al. An evaluation of acute hydrogen sulfide poisoning in rats through serum metabolomics based on gas chromatography-mass spectrometry. Chem. Pharm. Bull. (Tokyo) 2014, 62(6):505-507.
    • (2014) Chem. Pharm. Bull. (Tokyo) , vol.62 , Issue.6 , pp. 505-507
    • Zhang, M.1
  • 23
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: pitfalls to avoid and a recommended approach
    • Salzberg S.L. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min. Knowl. Discov. 1997, 1(3):317-328.
    • (1997) Data Min. Knowl. Discov. , vol.1 , Issue.3 , pp. 317-328
    • Salzberg, S.L.1
  • 24
    • 77957226516 scopus 로고    scopus 로고
    • A bias correction for the minimum error rate in cross-validation
    • Tibshirani R.J., Tibshirani R. A bias correction for the minimum error rate in cross-validation. Ann. Appl. Stat. 2009, 822-829.
    • (2009) Ann. Appl. Stat. , pp. 822-829
    • Tibshirani, R.J.1    Tibshirani, R.2
  • 25
    • 84911394994 scopus 로고    scopus 로고
    • Bias correction for selecting the minimal-error classifier from many machine learning models
    • Ding Y., et al. Bias correction for selecting the minimal-error classifier from many machine learning models. Bioinformatics 2014, 30(22):3152-3158.
    • (2014) Bioinformatics , vol.30 , Issue.22 , pp. 3152-3158
    • Ding, Y.1
  • 26
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27(8):861-874.
    • (2006) Pattern Recognit. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 27
    • 26944454497 scopus 로고    scopus 로고
    • ROC graphs: notes and practical considerations for researchers
    • Fawcett T. ROC graphs: notes and practical considerations for researchers. Mach. Learn. 2004, 31:1-38.
    • (2004) Mach. Learn. , vol.31 , pp. 1-38
    • Fawcett, T.1
  • 28
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification, Technical report
    • Department of Computer Science and Information Engineering, National Taiwan University, Taipei
    • Hsu, C.W., C.C. Chang, C.J. Lin, A practical guide to support vector classification, Technical report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 2003, Available at . http://www.csie.ntu.edu.tw/cjlin/libsvm/.
    • (2003)
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.