메뉴 건너뛰기




Volumn 9, Issue , 2015, Pages 6421-6431

Autophagy facilitates lung adenocarcinoma resistance to cisplatin treatment by activation of AMPK/mTOR signaling pathway

Author keywords

A549 cells; A549 DDP cells; AMPK; Autophagy; Chemoresistance; Chloroquine; Lung cancer

Indexed keywords

BECLIN 1; CHLOROQUINE; CISPLATIN; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; IMMUNOGLOBULIN LIGHT CHAIN; LC3B II PROTEIN; MAMMALIAN TARGET OF RAPAMYCIN; UNCLASSIFIED DRUG; ANTINEOPLASTIC AGENT; MTOR PROTEIN, HUMAN; TARGET OF RAPAMYCIN KINASE;

EID: 84949988536     PISSN: None     EISSN: 11778881     Source Type: Journal    
DOI: 10.2147/DDDT.S95606     Document Type: Article
Times cited : (74)

References (42)
  • 2
    • 84885353689 scopus 로고    scopus 로고
    • Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
    • Vansteenkiste J, De Ruysscher D, Eberhardt WE, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24 Suppl 6:vi89–vi98.
    • (2013) Ann Oncol , vol.24 , pp. vi89-vi98
    • Vansteenkiste, J.1    De Ruysscher, D.2    Eberhardt, W.E.3
  • 3
    • 84916202468 scopus 로고    scopus 로고
    • In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in nonsmall cell lung cancer cell lines
    • Wang MC, Liang X, Liu ZY, et al. In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in nonsmall cell lung cancer cell lines. Oncol Rep. 2015;33(1):239–249.
    • (2015) Oncol Rep , vol.33 , Issue.1 , pp. 239-249
    • Wang, M.C.1    Liang, X.2    Liu, Z.Y.3
  • 4
    • 84866597083 scopus 로고    scopus 로고
    • Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
    • Peters S, Adjei AA, Gridelli C, et al. Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23 Suppl 7:vii56–vii64.
    • (2012) Ann Oncol , vol.23 , pp. vii56-vii64
    • Peters, S.1    Adjei, A.A.2    Gridelli, C.3
  • 5
    • 34547758880 scopus 로고    scopus 로고
    • Developments in the treatment of non-small cell lung cancer
    • Gkiozos I, Charpidou A, Syrigos K. Developments in the treatment of non-small cell lung cancer. Anticancer Res. 2007;27(4C):2823–2827.
    • (2007) Anticancer Res , vol.27 , pp. 2823-2827
    • Gkiozos, I.1    Charpidou, A.2    Syrigos, K.3
  • 7
    • 84859771379 scopus 로고    scopus 로고
    • Molecular mechanisms of cisplatin resistance
    • Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869–1883.
    • (2012) Oncogene , vol.31 , Issue.15 , pp. 1869-1883
    • Galluzzi, L.1    Senovilla, L.2    Vitale, I.3
  • 9
    • 84908263722 scopus 로고    scopus 로고
    • Systems biology of cisplatin resistance: Past, present and future
    • Galluzzi L, Vitale I, Michels J, et al. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 2014;5:e1257.
    • (2014) Cell Death Dis , vol.5
    • Galluzzi, L.1    Vitale, I.2    Michels, J.3
  • 10
    • 34247130456 scopus 로고    scopus 로고
    • Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance
    • Brozovic A, Osmak M. Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance. Cancer Lett. 2007;251(1):1–16.
    • (2007) Cancer Lett , vol.251 , Issue.1 , pp. 1-16
    • Brozovic, A.1    Osmak, M.2
  • 11
    • 78751556979 scopus 로고    scopus 로고
    • Autophagy as a therapeutic target in cancer
    • Chen N, Karantza V. Autophagy as a therapeutic target in cancer. Cancer Biol Ther. 2011;11(2):157–168.
    • (2011) Cancer Biol Ther , vol.11 , Issue.2 , pp. 157-168
    • Chen, N.1    Karantza, V.2
  • 12
    • 77956404377 scopus 로고    scopus 로고
    • Eaten alive: A history of macroautophagy
    • Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12(9):814–822.
    • (2010) Nat Cell Biol , vol.12 , Issue.9 , pp. 814-822
    • Yang, Z.1    Klionsky, D.J.2
  • 13
    • 84857366779 scopus 로고    scopus 로고
    • The autophagic paradox in cancer therapy
    • Wu WK, Coffelt SB, Cho CH, et al. The autophagic paradox in cancer therapy. Oncogene. 2012;31(8):939–953.
    • (2012) Oncogene , vol.31 , Issue.8 , pp. 939-953
    • Wu, W.K.1    Coffelt, S.B.2    Cho, C.H.3
  • 14
    • 84887437596 scopus 로고    scopus 로고
    • Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment
    • Sui X, Chen R, Wang Z, et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 2013;4:e838.
    • (2013) Cell Death Dis , vol.4
    • Sui, X.1    Chen, R.2    Wang, Z.3
  • 15
    • 84863985893 scopus 로고    scopus 로고
    • Long-term cisplatin exposure impairs autophagy and causes cisplatin resistance in human lung cancer cells
    • Sirichanchuen B, Pengsuparp T, Chanvorachote P. Long-term cisplatin exposure impairs autophagy and causes cisplatin resistance in human lung cancer cells. Mol Cell Biochem. 2012;364(1–2):11–18.
    • (2012) Mol Cell Biochem , vol.364 , Issue.1-2 , pp. 11-18
    • Sirichanchuen, B.1    Pengsuparp, T.2    Chanvorachote, P.3
  • 16
    • 77649286874 scopus 로고    scopus 로고
    • Acquired cisplatin resistance in human lung adenocarcinoma cells is associated with enhanced autophagy
    • Ren JH, He WS, Nong L, et al. Acquired cisplatin resistance in human lung adenocarcinoma cells is associated with enhanced autophagy. Cancer Biother Radiopharm. 2010;25(1):75–80.
    • (2010) Cancer Biother Radiopharm , vol.25 , Issue.1 , pp. 75-80
    • Ren, J.H.1    He, W.S.2    Nong, L.3
  • 17
    • 84891938420 scopus 로고    scopus 로고
    • Autophagy induction by low-dose cisplatin: The role of p53 in autophagy
    • Cho KH, Park JH, Kwon KB, et al. Autophagy induction by low-dose cisplatin: the role of p53 in autophagy. Oncol Rep. 2014;31(1):248–254.
    • (2014) Oncol Rep , vol.31 , Issue.1 , pp. 248-254
    • Cho, K.H.1    Park, J.H.2    Kwon, K.B.3
  • 18
    • 0034329418 scopus 로고    scopus 로고
    • LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
    • Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(21):5720–5728.
    • (2000) EMBO J , vol.19 , Issue.21 , pp. 5720-5728
    • Kabeya, Y.1    Mizushima, N.2    Ueno, T.3
  • 19
    • 25144457455 scopus 로고    scopus 로고
    • Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
    • Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–939.
    • (2005) Cell , vol.122 , Issue.6 , pp. 927-939
    • Pattingre, S.1    Tassa, A.2    Qu, X.3
  • 20
    • 35848967804 scopus 로고    scopus 로고
    • How to interpret LC3 immunoblotting
    • Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542–545.
    • (2007) Autophagy , vol.3 , Issue.6 , pp. 542-545
    • Mizushima, N.1    Yoshimori, T.2
  • 21
    • 84924854199 scopus 로고    scopus 로고
    • The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells
    • Lee SW, Kim HK, Lee NH, et al. The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells. Cancer Lett. 2015;360(2):195–204.
    • (2015) Cancer Lett , vol.360 , Issue.2 , pp. 195-204
    • Lee, S.W.1    Kim, H.K.2    Lee, N.H.3
  • 22
    • 0033997045 scopus 로고    scopus 로고
    • The lysosomotropic agent monodansylcadaverine also acts as a solvent polarity probe
    • Niemann A, Takatsuki A, Elsasser HP. The lysosomotropic agent monodansylcadaverine also acts as a solvent polarity probe. J Histochem Cytochem. 2000;48(2):251–258.
    • (2000) J Histochem Cytochem , vol.48 , Issue.2 , pp. 251-258
    • Niemann, A.1    Takatsuki, A.2    Elsasser, H.P.3
  • 23
    • 0034757896 scopus 로고    scopus 로고
    • A novel assay to study autophagy: Regulation of autophagosome vacuole size by amino acid deprivation
    • Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci. 2001;114(Pt 20):3619–3629.
    • (2001) J Cell Sci , vol.114 , pp. 3619-3629
    • Munafo, D.B.1    Colombo, M.I.2
  • 24
    • 84920504512 scopus 로고    scopus 로고
    • MTOR: A pharmacologic target for autophagy regulation
    • Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015;125(1):25–32.
    • (2015) J Clin Invest , vol.125 , Issue.1 , pp. 25-32
    • Kim, Y.C.1    Guan, K.L.2
  • 25
    • 77951214016 scopus 로고    scopus 로고
    • Mammalian autophagy: Core molecular machinery and signaling regulation
    • Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22(2):124–131.
    • (2010) Curr Opin Cell Biol , vol.22 , Issue.2 , pp. 124-131
    • Yang, Z.1    Klionsky, D.J.2
  • 26
    • 77956363593 scopus 로고    scopus 로고
    • Autophagic pathways as new targets for cancer drug development
    • Liu B, Cheng Y, Liu Q, Bao JK, Yang JM. Autophagic pathways as new targets for cancer drug development. Acta Pharmacol Sin. 2010;31(9):1154–1164.
    • (2010) Acta Pharmacol Sin , vol.31 , Issue.9 , pp. 1154-1164
    • Liu, B.1    Cheng, Y.2    Liu, Q.3    Bao, J.K.4    Yang, J.M.5
  • 27
    • 84866122688 scopus 로고    scopus 로고
    • Autophagy modulation as a potential therapeutic target for diverse diseases
    • Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11(9):709–730.
    • (2012) Nat Rev Drug Discov , vol.11 , Issue.9 , pp. 709-730
    • Rubinsztein, D.C.1    Codogno, P.2    Levine, B.3
  • 28
    • 84859360525 scopus 로고    scopus 로고
    • Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy
    • Shi WY, Xiao D, Wang L, et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis. 2012;3:e275.
    • (2012) Cell Death Dis , vol.3
    • Shi, W.Y.1    Xiao, D.2    Wang, L.3
  • 29
    • 17144427728 scopus 로고    scopus 로고
    • Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors
    • Takeuchi H, Kondo Y, Fujiwara K, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 2005;65(8):3336–3346.
    • (2005) Cancer Res , vol.65 , Issue.8 , pp. 3336-3346
    • Takeuchi, H.1    Kondo, Y.2    Fujiwara, K.3
  • 30
    • 77950788603 scopus 로고    scopus 로고
    • Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma
    • Cirstea D, Hideshima T, Rodig S, et al. Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol Cancer Ther. 2010;9(4):963–975.
    • (2010) Mol Cancer Ther , vol.9 , Issue.4 , pp. 963-975
    • Cirstea, D.1    Hideshima, T.2    Rodig, S.3
  • 31
    • 79952690221 scopus 로고    scopus 로고
    • Imatinib induces autophagy through BECLIN-1 and ATG5 genes in chronic myeloid leukemia cells
    • Can G, Ekiz HA, Baran Y. Imatinib induces autophagy through BECLIN-1 and ATG5 genes in chronic myeloid leukemia cells. Hematology. 2011;16(2):95–99.
    • (2011) Hematology , vol.16 , Issue.2 , pp. 95-99
    • Can, G.1    Ekiz, H.A.2    Baran, Y.3
  • 32
    • 84907966806 scopus 로고    scopus 로고
    • Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with acquired drug resistance
    • Yu L, Gu C, Zhong D, et al. Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with acquired drug resistance. Cancer Lett. 2014;355(1):34–45.
    • (2014) Cancer Lett , vol.355 , Issue.1 , pp. 34-45
    • Yu, L.1    Gu, C.2    Zhong, D.3
  • 33
    • 84922344846 scopus 로고    scopus 로고
    • Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers
    • Lefort S, Joffre C, Kieffer Y, et al. Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers. Autophagy. 2014;10(12):2122–2142.
    • (2014) Autophagy , vol.10 , Issue.12 , pp. 2122-2142
    • Lefort, S.1    Joffre, C.2    Kieffer, Y.3
  • 34
    • 84898058136 scopus 로고    scopus 로고
    • Inhibition of autophagy augments chemotherapy in human salivary adenoid cystic carcinoma
    • Jiang L, Huang S, Zhang D, et al. Inhibition of autophagy augments chemotherapy in human salivary adenoid cystic carcinoma. J Oral Pathol Med. 2014;43(4):265–272.
    • (2014) J Oral Pathol Med , vol.43 , Issue.4 , pp. 265-272
    • Jiang, L.1    Huang, S.2    Zhang, D.3
  • 35
    • 75749122303 scopus 로고    scopus 로고
    • Methods in mammalian autophagy research
    • Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3):313–326.
    • (2010) Cell , vol.140 , Issue.3 , pp. 313-326
    • Mizushima, N.1    Yoshimori, T.2    Levine, B.3
  • 37
    • 84877905545 scopus 로고    scopus 로고
    • Autophagy: A targetable linchpin of cancer cell metabolism
    • Leone RD, Amaravadi RK. Autophagy: a targetable linchpin of cancer cell metabolism. Trends Endocrinol Metab. 2013;24(4):209–217.
    • (2013) Trends Endocrinol Metab , vol.24 , Issue.4 , pp. 209-217
    • Leone, R.D.1    Amaravadi, R.K.2
  • 38
    • 84861648941 scopus 로고    scopus 로고
    • Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells
    • Din FV, Valanciute A, Houde VP, et al. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology. 2012;142(7):1504–1515.e1503.
    • (2012) Gastroenterology , vol.142 , Issue.7
    • Din, F.V.1    Valanciute, A.2    Houde, V.P.3
  • 39
    • 84915774505 scopus 로고    scopus 로고
    • Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells
    • Aryal P, Kim K, Park PH, Ham S, Cho J, Song K. Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells. FEBS J. 2014;281(20):4644–4658.
    • (2014) FEBS J , vol.281 , Issue.20 , pp. 4644-4658
    • Aryal, P.1    Kim, K.2    Park, P.H.3    Ham, S.4    Cho, J.5    Song, K.6
  • 40
    • 84912528393 scopus 로고    scopus 로고
    • MTOR and autophagy: A dynamic relationship governed by nutrients and energy
    • Dunlop EA, Tee AR. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol. 2014;36:121–129.
    • (2014) Semin Cell Dev Biol , vol.36 , pp. 121-129
    • Dunlop, E.A.1    Tee, A.R.2
  • 41
    • 80052511813 scopus 로고    scopus 로고
    • The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
    • Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13(9):1016–1023.
    • (2011) Nat Cell Biol , vol.13 , Issue.9 , pp. 1016-1023
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 42
    • 84856800302 scopus 로고    scopus 로고
    • Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks
    • Alers S, Loffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32(1):2–11.
    • (2012) Mol Cell Biol , vol.32 , Issue.1 , pp. 2-11
    • Alers, S.1    Loffler, A.S.2    Wesselborg, S.3    Stork, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.