메뉴 건너뛰기




Volumn 363, Issue , 2016, Pages 584-599

Machine learning algorithms for damage detection: Kernel-based approaches

Author keywords

Damage detection; Environmental conditions; Kernel; Operational conditions; Structural health monitoring

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; DATA DESCRIPTION; IMAGE SEGMENTATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; PRINCIPAL COMPONENT ANALYSIS; STRUCTURAL HEALTH MONITORING;

EID: 84949908086     PISSN: 0022460X     EISSN: 10958568     Source Type: Journal    
DOI: 10.1016/j.jsv.2015.11.008     Document Type: Article
Times cited : (177)

References (51)
  • 4
    • 0035361499 scopus 로고    scopus 로고
    • Damage diagnosis using time series analysis of vibration signals
    • H. Sohn, and C.R. Farrar Damage diagnosis using time series analysis of vibration signals Smart Materials and Structures 10 3 2001 446 451 10.1088/0964-1726/10/3/304
    • (2001) Smart Materials and Structures , vol.10 , Issue.3 , pp. 446-451
    • Sohn, H.1    Farrar, C.R.2
  • 5
    • 34547110218 scopus 로고    scopus 로고
    • An overview of intelligent fault detection in systems and structures
    • K. Worden, and J.M. Dulieu-Barton An overview of intelligent fault detection in systems and structures Structural Health Monitoring 3 1 2004 85 98 10.1177/147592170404186
    • (2004) Structural Health Monitoring , vol.3 , Issue.1 , pp. 85-98
    • Worden, K.1    Dulieu-Barton, J.M.2
  • 6
    • 28844448603 scopus 로고    scopus 로고
    • Statistical moments of autoregressive model residuals for damage localisation
    • S.G. Mattson, and S.M. Pandit Statistical moments of autoregressive model residuals for damage localisation Mechanical Systems and Signal Processing 20 3 2006 627 645 10.1016/j.ymssp.2004.08.005
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.3 , pp. 627-645
    • Mattson, S.G.1    Pandit, S.M.2
  • 7
    • 77956266165 scopus 로고    scopus 로고
    • Autoregressive modeling with state-space embedding vectors for damage detection under operational variability
    • E. Figueiredo, M. Todd, C. Farrar, and E. Flynn Autoregressive modeling with state-space embedding vectors for damage detection under operational variability International Journal of Engineering Science 48 10 2010 822 834 10.1016/j.ijengsci.2010.05.005
    • (2010) International Journal of Engineering Science , vol.48 , Issue.10 , pp. 822-834
    • Figueiredo, E.1    Todd, M.2    Farrar, C.3    Flynn, E.4
  • 11
    • 0042366263 scopus 로고    scopus 로고
    • Statistical damage classification under changing environmental and operational conditions
    • H. Sohn, K. Worden, and C.R. Farrar Statistical damage classification under changing environmental and operational conditions Journal of Intelligent Material Systems and Structures 13 9 2002 561 574 10.1106/104538902030904
    • (2002) Journal of Intelligent Material Systems and Structures , vol.13 , Issue.9 , pp. 561-574
    • Sohn, H.1    Worden, K.2    Farrar, C.R.3
  • 12
    • 0035360461 scopus 로고    scopus 로고
    • Damage identification using support vector machines
    • K. Worden, and A.J. Lane Damage identification using support vector machines Smart Materials and Structures 10 3 2001 540 547 10.1088/0964-1726/10/3/317
    • (2001) Smart Materials and Structures , vol.10 , Issue.3 , pp. 540-547
    • Worden, K.1    Lane, A.J.2
  • 13
    • 77953529527 scopus 로고    scopus 로고
    • Structural health monitoring with autoregressive support vector machines
    • 021004-1-9
    • L. Bornn, C.R. Farrar, G. Park, and K. Farinholt Structural health monitoring with autoregressive support vector machines Journal of Vibration and Acoustics 131 2 2009 10.1115/1.3025827 021004-1-9
    • (2009) Journal of Vibration and Acoustics , vol.131 , Issue.2
    • Bornn, L.1    Farrar, C.R.2    Park, G.3    Farinholt, K.4
  • 14
    • 84871551464 scopus 로고    scopus 로고
    • Wavelet-based AR-SVM for health monitoring of smart structures
    • Y. Kim, J.W. Chong, and K.H.C.J. Kim Wavelet-based AR-SVM for health monitoring of smart structures Smart Materials and Structures 22 1 2013 1 12 10.1088/0964-1726/22/1/015003
    • (2013) Smart Materials and Structures , vol.22 , Issue.1 , pp. 1-12
    • Kim, Y.1    Chong, J.W.2    Kim, K.H.C.J.3
  • 15
    • 84905924896 scopus 로고    scopus 로고
    • Nonlinear multiclass support vector machine-based health monitoring system for buildings employing magnetorheological dampers
    • J.W. Chong, Y. Kim, and K.H. Chon Nonlinear multiclass support vector machine-based health monitoring system for buildings employing magnetorheological dampers Journal of Intelligent Material Systems and Structures 25 12 2014 1456 1468 10.1177/1045389X13507343
    • (2014) Journal of Intelligent Material Systems and Structures , vol.25 , Issue.12 , pp. 1456-1468
    • Chong, J.W.1    Kim, Y.2    Chon, K.H.3
  • 16
    • 84904005555 scopus 로고    scopus 로고
    • Robust dimensionality reduction and damage detection approaches in structural health monitoring
    • N.L. Khoa, B. Zhang, Y. Wang, F. Chen, and S. Mustapha Robust dimensionality reduction and damage detection approaches in structural health monitoring Structural Health Monitoring 13 4 2014 406 417 10.1177/1475921714532989
    • (2014) Structural Health Monitoring , vol.13 , Issue.4 , pp. 406-417
    • Khoa, N.L.1    Zhang, B.2    Wang, Y.3    Chen, F.4    Mustapha, S.5
  • 17
    • 25144509921 scopus 로고    scopus 로고
    • Quantitative damage diagnosis of shear structures using support vector machine
    • A. Mita, and H. Hagiwara Quantitative damage diagnosis of shear structures using support vector machine KSCE Journal of Civil Engineering 7 6 2003 683 689 10.1007/BF02829138
    • (2003) KSCE Journal of Civil Engineering , vol.7 , Issue.6 , pp. 683-689
    • Mita, A.1    Hagiwara, H.2
  • 18
    • 33847757556 scopus 로고    scopus 로고
    • Structural damage detection with wavelet support vector machine: Introduction and applications
    • H.-X. He, and W. ming Yan Structural damage detection with wavelet support vector machine: introduction and applications Structural Control and Health Monitoring 14 1 2007 162 176 10.1002/stc.150
    • (2007) Structural Control and Health Monitoring , vol.14 , Issue.1 , pp. 162-176
    • He, H.-X.1    Ming Yan, W.2
  • 19
    • 84858331274 scopus 로고    scopus 로고
    • Pattern recognition of structural behaviors based on learning algorithms and symbolic data concepts
    • A. Cury, and C. Crémona Pattern recognition of structural behaviors based on learning algorithms and symbolic data concepts Structural Control and Health Monitoring 19 2 2012 161 186 10.1002/stc.412
    • (2012) Structural Control and Health Monitoring , vol.19 , Issue.2 , pp. 161-186
    • Cury, A.1    Crémona, C.2
  • 20
    • 85014774838 scopus 로고    scopus 로고
    • Damage detection method using support vector machine and first three natural frequencies for shear structures
    • H. HoThu, and A. Mita Damage detection method using support vector machine and first three natural frequencies for shear structures Open Journal of Civil Engineering 3 2 2013 104 112 10.4236/ojce.2013.32012
    • (2013) Open Journal of Civil Engineering , vol.3 , Issue.2 , pp. 104-112
    • HoThu, H.1    Mita, A.2
  • 21
  • 23
    • 80455123889 scopus 로고    scopus 로고
    • Machine learning algorithms for damage detection under operational and environmental variability
    • E. Figueiredo, G. Park, C.R. Farrar, K. Worden, and J. Figueiras Machine learning algorithms for damage detection under operational and environmental variability Structural Health Monitoring 10 6 2011 559 572 10.1177/1475921710388971
    • (2011) Structural Health Monitoring , vol.10 , Issue.6 , pp. 559-572
    • Figueiredo, E.1    Park, G.2    Farrar, C.R.3    Worden, K.4    Figueiras, J.5
  • 24
    • 84891954999 scopus 로고    scopus 로고
    • Data-driven multivariate algorithms for damage detection and identification: Evaluation and comparison
    • M.A. Torres-Arredondo, D.A. Tibaduiza, L.E. Mujica, J. Rodellar, and C.-P. Fritzen Data-driven multivariate algorithms for damage detection and identification: evaluation and comparison Structural Health Monitoring 13 1 2014 19 32 10.1177/1475921713498530
    • (2014) Structural Health Monitoring , vol.13 , Issue.1 , pp. 19-32
    • Torres-Arredondo, M.A.1    Tibaduiza, D.A.2    Mujica, L.E.3    Rodellar, J.4    Fritzen, C.-P.5
  • 25
    • 84903946292 scopus 로고    scopus 로고
    • Controlled Monte Carlo data generation for statistical damage identification employing Mahalanobis squared distance
    • T. Nguyen, T.H. Chan, and D.P. Thambiratnam Controlled Monte Carlo data generation for statistical damage identification employing Mahalanobis squared distance Structural Health Monitoring 13 4 2014 461 472 10.1177/1475921714521270
    • (2014) Structural Health Monitoring , vol.13 , Issue.4 , pp. 461-472
    • Nguyen, T.1    Chan, T.H.2    Thambiratnam, D.P.3
  • 26
    • 84905969947 scopus 로고    scopus 로고
    • Modal parameters based structural damage detection using artificial neural networks - A review
    • S. Hakim, and H.A. Razak Modal parameters based structural damage detection using artificial neural networks - a review Smart Structures and Systems 14 2 2014 159 189 10.12989/sss.2014.14.2.159
    • (2014) Smart Structures and Systems , vol.14 , Issue.2 , pp. 159-189
    • Hakim, S.1    Razak, H.A.2
  • 27
    • 77949804609 scopus 로고    scopus 로고
    • Damage detection accommodating nonlinear environmental effects by nonlinear principal component analysis
    • T.-Y. Hsu, and C.-H. Loh Damage detection accommodating nonlinear environmental effects by nonlinear principal component analysis Structural Control and Health Monitoring 17 3 2010 338 354 10.1002/stc.320
    • (2010) Structural Control and Health Monitoring , vol.17 , Issue.3 , pp. 338-354
    • Hsu, T.-Y.1    Loh, C.-H.2
  • 30
    • 0000323791 scopus 로고    scopus 로고
    • Using SVD to detect damage in structures with different operational conditions
    • R. Ruotolo, and C. Surace Using SVD to detect damage in structures with different operational conditions Journal of Sound and Vibration 226 3 1999 425 439 10.1006/jsvi.1999.2305
    • (1999) Journal of Sound and Vibration , vol.226 , Issue.3 , pp. 425-439
    • Ruotolo, R.1    Surace, C.2
  • 33
    • 84861625185 scopus 로고    scopus 로고
    • Autoregressive statistical pattern recognition algorithms for damage detection in civil structures
    • R. Yao, and S.N. Pakzad Autoregressive statistical pattern recognition algorithms for damage detection in civil structures Mechanical Systems and Signal Processing 31 2012 355 368 10.1016/j.ymssp.2012.02.014
    • (2012) Mechanical Systems and Signal Processing , vol.31 , pp. 355-368
    • Yao, R.1    Pakzad, S.N.2
  • 35
    • 55449096673 scopus 로고    scopus 로고
    • Comparison of selected model evaluation criteria for maintenance applications
    • R. Kothamasu, J. Shi, S.H. Huang, and H.R. Leep Comparison of selected model evaluation criteria for maintenance applications Structural Health Monitoring 3 3 2004 213 224 10.1177/1475921704042696
    • (2004) Structural Health Monitoring , vol.3 , Issue.3 , pp. 213-224
    • Kothamasu, R.1    Shi, J.2    Huang, S.H.3    Leep, H.R.4
  • 37
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Machine Learning 20 3 1995 273 297 10.1023/A:1022627411411
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 39
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • S.S. Keerthi, and C.-J. Lin Asymptotic behaviors of support vector machines with gaussian kernel Neural Computation 15 7 2003 1667 1689 10.1162/089976603321891855
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 42
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D.M.J. Tax, and R.P.W. Duin Support vector data description Machine Learning 54 1 2004 45 66 10.1023/B:MACH.0000008084.60811.49
    • (2004) Machine Learning , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 44
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.-R. Muller Nonlinear component analysis as a kernel eigenvalue problem Neural Computation 10 5 1998 1299 1319 10.1162/089976698300017467
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 47
    • 35248814824 scopus 로고    scopus 로고
    • Greedy algorithm for a training set reduction in the kernel methods
    • Springer Groningen, Netherlands
    • V. Franc, and V. Hlavac Greedy algorithm for a training set reduction in the kernel methods Computer Analysis of Images and Patterns 2003 Springer Groningen, Netherlands 426 433 10.1007/978-3-540-45179-2-53
    • (2003) Computer Analysis of Images and Patterns , pp. 426-433
    • Franc, V.1    Hlavac, V.2
  • 50
    • 0035251387 scopus 로고    scopus 로고
    • One-year monitoring of the Z24-Bridge: Environmental effects versus damage events
    • B. Peeters, and G.D. Roeck One-year monitoring of the Z24-Bridge: environmental effects versus damage events Earthquake Engineering & Structural Dynamics 30 2 2001 149 171 10.1002/1096-9845(200102)30:2(149::AID-EQE1)3.0.CO;2-Z
    • (2001) Earthquake Engineering & Structural Dynamics , vol.30 , Issue.2 , pp. 149-171
    • Peeters, B.1    Roeck, G.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.