메뉴 건너뛰기




Volumn 19, Issue 2, 2012, Pages 161-186

Pattern recognition of structural behaviors based on learning algorithms and symbolic data concepts

Author keywords

damage assessment; learning algorithms; pattern recognition; probability of true detection; symbolic data

Indexed keywords

BAYESIAN DECISION; CLASSIFICATION TECHNIQUE; DAMAGE ASSESSMENTS; DIFFERENT DAMAGES; EXPERIMENTAL TEST; HIGH PROBABILITY; MODAL PARAMETERS; MODAL PROPERTIES; MODE SHAPES; NOISE LEVELS; PATTERN RECOGNITION PROBLEMS; RAILWAY BRIDGES; STRUCTURAL BEHAVIORS; STRUCTURAL CONDITION; STRUCTURAL MODIFICATIONS; SYMBOLIC DATA; SYMBOLIC DATA ANALYSIS; VIBRATION DATA; VIBRATION SIGNATURE;

EID: 84858331274     PISSN: 15452255     EISSN: 15452263     Source Type: Journal    
DOI: 10.1002/stc.412     Document Type: Article
Times cited : (55)

References (30)
  • 1
    • 34047250842 scopus 로고    scopus 로고
    • Development in vibration-based structural damage detection technique
    • DOI 10.1016/j.ymssp.2006.10.002, PII S0888327006002226
    • Yan YJ, Cheng L, Wu ZY, Yam LH,. Development in vibration-based structural damage detection technique. Mechanical Systems and Signal Processing 2007; 21: 2198-2211. (Pubitemid 46550768)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.5 , pp. 2198-2211
    • Yan, Y.J.1    Cheng, L.2    Wu, Z.Y.3    Yam, L.H.4
  • 2
    • 85001104724 scopus 로고    scopus 로고
    • Damage identification and health monitoring on structural and mechanical systems form changes in their vibration characteristics: A literature review
    • Los Alamos National Laboratory
    • Doebling SW, Farrar CR, Prime MB, Shevitz DW,. Damage identification and health monitoring on structural and mechanical systems form changes in their vibration characteristics: a literature review. Report LA-13070-MS, Los Alamos National Laboratory, 1996.
    • (1996) Report LA-13070-MS
    • Doebling, S.W.1    Farrar, C.R.2    Prime, M.B.3    Shevitz, D.W.4
  • 3
    • 33847734345 scopus 로고    scopus 로고
    • Statistical damage identification for bridges using ambient vibration data
    • DOI 10.1016/j.compstruc.2006.08.071, PII S004579490600304X
    • Zhang QW,. Statistical damage identification for bridges using ambient vibration data. Computers and Structures 2007; 85: 476-485. (Pubitemid 46386267)
    • (2007) Computers and Structures , vol.85 , Issue.7-8 , pp. 476-485
    • Zhang, Q.W.1
  • 5
    • 5744248324 scopus 로고    scopus 로고
    • An unsupervised statistical damage detection method for structural health monitoring
    • Iwasaki A, Todoroki A, Shimamura Y, Kobayashi H,. An unsupervised statistical damage detection method for structural health monitoring. Smart Material Structures 2004; 13: 80-85.
    • (2004) Smart Material Structures , vol.13 , pp. 80-85
    • Iwasaki, A.1    Todoroki, A.2    Shimamura, Y.3    Kobayashi, H.4
  • 6
    • 15844393476 scopus 로고    scopus 로고
    • Damage detection in bridges using neural networks for pattern recognition of vibration signatures
    • DOI 10.1016/j.engstruct.2004.12.006, PII S0141029605000155
    • Yeung WT, Smith JW,. Damage detection in bridges using neural networks for pattern recognition of vibration signatures. Engineering Structures 2005; 27: 685-698. (Pubitemid 40426644)
    • (2005) Engineering Structures , vol.27 , Issue.5 , pp. 685-698
    • Yeung, W.T.1    Smith, J.W.2
  • 7
    • 23844479506 scopus 로고    scopus 로고
    • Damage identification for structural health monitoring using fuzzy pattern recognition
    • DOI 10.1016/j.engstruct.2005.04.018, PII S0141029605002233
    • Reda Taha MM, Lucero J,. Damage identification for structural health monitoring using fuzzy pattern recognition. Engineering Structures 2005; 27: 1774-1783. (Pubitemid 41179290)
    • (2005) Engineering Structures , vol.27 , Issue.12 , pp. 1774-1783
    • Reda Taha, M.M.1    Lucero, J.2
  • 8
    • 23144446338 scopus 로고    scopus 로고
    • Structural damage detection using neural network with learning rate improvement
    • DOI 10.1016/j.compstruc.2005.02.029, PII S004579490500177X
    • Fang X, Luo H, Tang J,. Structural damage detection using neural network with learning rate improvement. Computers and Structures 2005; 83: 2150-2161. (Pubitemid 41084681)
    • (2005) Computers and Structures , vol.83 , Issue.25-26 , pp. 2150-2161
    • Fang, X.1    Luo, H.2    Tang, J.3
  • 11
    • 33644604257 scopus 로고    scopus 로고
    • Structural damage detection using information fusion technique
    • Guo H,. Structural damage detection using information fusion technique. Mechanical Systems and Signal Processing 2006; 20: 1173-1188.
    • (2006) Mechanical Systems and Signal Processing , vol.20 , pp. 1173-1188
    • Guo, H.1
  • 12
    • 0038298890 scopus 로고    scopus 로고
    • Categorisation and pattern recognition methods for damage localisation from vibration measurements
    • Trendafilova I, Heylen W,. Categorisation and pattern recognition methods for damage localisation from vibration measurements. Mechanical Systems and Signal Processing 2003; 17: 825-836.
    • (2003) Mechanical Systems and Signal Processing , vol.17 , pp. 825-836
    • Trendafilova, I.1    Heylen, W.2
  • 16
    • 75749148724 scopus 로고    scopus 로고
    • Application of symbolic data analysis for structural modification assessment
    • Cury A, Cremona C, Diday E,. Application of symbolic data analysis for structural modification assessment. Engineering Structures 2010; 32: 762-775.
    • (2010) Engineering Structures , vol.32 , pp. 762-775
    • Cury, A.1    Cremona, C.2    Diday, E.3
  • 17
    • 0002333325 scopus 로고
    • Using kernel density estimates to investigate multimodality
    • Silverman B,. Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical Society 1986; 43: 97-99.
    • (1986) Journal of the Royal Statistical Society , vol.43 , pp. 97-99
    • Silverman, B.1
  • 23
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • DOI 10.1109/72.991427, PII S1045922702018052
    • Hsu CW, Lin C-J,. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 2002; 13: 415-425. (Pubitemid 34475042)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 24
    • 34248677013 scopus 로고    scopus 로고
    • Global convergence of decomposition learning methods for support vector machines
    • DOI 10.1109/TNN.2006.880584
    • Takahashi N, Nishi T,. Global convergence of decomposition learning methods for support vector machines. IEEE Transactions on Neural Networks 2006; 17: 1362-1369. (Pubitemid 44824252)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.6 , pp. 1362-1369
    • Takahashi, N.1    Nishi, T.2
  • 28
    • 32844469910 scopus 로고    scopus 로고
    • Assessment of vibration-based damage identification techniques
    • DOI 10.1016/j.jsv.2005.07.036, PII S0022460X05004980
    • Alvandi A, Cremona C,. Assessment of vibration-based damage identification techniques. Journal of Sound and Vibration 2006; 292: 179-202. (Pubitemid 43253685)
    • (2006) Journal of Sound and Vibration , vol.292 , Issue.1-2 , pp. 179-202
    • Alvandi, A.1    Cremona, C.2
  • 30
    • 42449150779 scopus 로고    scopus 로고
    • Dynamic monitoring applied to the detection of structural modifications. A high speed railway bridge study
    • Cremona C,. Dynamic monitoring applied to the detection of structural modifications. A high speed railway bridge study. Progress in Structural Engineering and Materials 2004; 3: 147-161.
    • (2004) Progress in Structural Engineering and Materials , vol.3 , pp. 147-161
    • Cremona, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.