-
1
-
-
84859416933
-
Regulatory T cells: mechanisms of differentiation and function
-
Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol (2007) 30:531-64. doi:10.1146/annurev.immunol.25.022106.141623
-
(2007)
Annu Rev Immunol
, vol.30
, pp. 531-564
-
-
Josefowicz, S.Z.1
Lu, L.F.2
Rudensky, A.Y.3
-
2
-
-
84875427488
-
Regulatory T cells: recommendations to simplify the nomenclature
-
Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol (2013) 14:307-8. doi:10.1038/ni.2554
-
(2013)
Nat Immunol
, vol.14
, pp. 307-308
-
-
Abbas, A.K.1
Benoist, C.2
Bluestone, J.A.3
Campbell, D.J.4
Ghosh, S.5
Hori, S.6
-
3
-
-
84897941063
-
tTregs, pTregs, and iTregs: similarities and differences
-
Shevach EM, Thornton AM. tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev (2014) 259:88-102. doi:10.1111/imr.12160
-
(2014)
Immunol Rev
, vol.259
, pp. 88-102
-
-
Shevach, E.M.1
Thornton, A.M.2
-
4
-
-
84897943060
-
The role of T-cell receptor recognition of peptide:MHC complexes in the formation and activity of Foxp3(+) regulatory T cells
-
Weissler KA, Caton AJ. The role of T-cell receptor recognition of peptide:MHC complexes in the formation and activity of Foxp3(+) regulatory T cells. Immunol Rev (2014) 259:11-22. doi:10.1111/imr.12177
-
(2014)
Immunol Rev
, vol.259
, pp. 11-22
-
-
Weissler, K.A.1
Caton, A.J.2
-
5
-
-
58349116249
-
Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory cells in peripheral blood and solid tissue
-
Wieczorek G, Asemissen A, Model F, Turbachova I, Gloess S, Liebenberg V, et al. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory cells in peripheral blood and solid tissue. Cancer Res (2009) 15:599-608. doi:10.1158/0008-5472.CAN-08-2361
-
(2009)
Cancer Res
, vol.15
, pp. 599-608
-
-
Wieczorek, G.1
Asemissen, A.2
Model, F.3
Turbachova, I.4
Gloess, S.5
Liebenberg, V.6
-
6
-
-
84883679673
-
Peripherally induced tregs - role in immune homeostasis and autoimmunity
-
Yadav M, Stephan S, Bluestone JA. Peripherally induced tregs - role in immune homeostasis and autoimmunity. Front Immunol (2013) 4:232. doi:10.3389/fimmu.2013.00232
-
(2013)
Front Immunol
, vol.4
, pp. 232
-
-
Yadav, M.1
Stephan, S.2
Bluestone, J.A.3
-
7
-
-
34548131112
-
Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10
-
Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, Rudensky AY, et al. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat Immunol (2007) 8:931-41. doi:10.1038/ni1504
-
(2007)
Nat Immunol
, vol.8
, pp. 931-941
-
-
Maynard, C.L.1
Harrington, L.E.2
Janowski, K.M.3
Oliver, J.R.4
Zindl, C.L.5
Rudensky, A.Y.6
-
9
-
-
84874141619
-
The cellular and molecular mechanisms of immuno-suppression by human type 1 regulatory T cells
-
Gregori S, Goudy KS, Roncarolo MG. The cellular and molecular mechanisms of immuno-suppression by human type 1 regulatory T cells. Front Immunol (2012) 3:30. doi:10.3389/fimmu.2012.00030
-
(2012)
Front Immunol
, vol.3
, pp. 30
-
-
Gregori, S.1
Goudy, K.S.2
Roncarolo, M.G.3
-
10
-
-
84958548312
-
Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications
-
Roncarolo MG, Gregori S, Bacchetta R, Battaglia M. Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr Top Microbiol Immunol (2014) 380:39-68. doi:10.1007/978-3-662-43492-5_3
-
(2014)
Curr Top Microbiol Immunol
, vol.380
, pp. 39-68
-
-
Roncarolo, M.G.1
Gregori, S.2
Bacchetta, R.3
Battaglia, M.4
-
11
-
-
0028037782
-
Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis
-
Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science (1994) 265:1237-40. doi:10.1126/science.7520605
-
(1994)
Science
, vol.265
, pp. 1237-1240
-
-
Chen, Y.1
Kuchroo, V.K.2
Inobe, J.3
Hafler, D.A.4
Weiner, H.L.5
-
12
-
-
33744990181
-
Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+ CD25- LAP+ T cells
-
Ochi H, Abraham M, Ishikawa H, Frenkel D, Yang K, Basso AS, et al. Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+ CD25- LAP+ T cells. Nat Med (2006) 12:627-35. doi:10.1038/nm1408
-
(2006)
Nat Med
, vol.12
, pp. 627-635
-
-
Ochi, H.1
Abraham, M.2
Ishikawa, H.3
Frenkel, D.4
Yang, K.5
Basso, A.S.6
-
13
-
-
36248970701
-
A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells
-
Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, Flavell RA, et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol (2007) 8:1380-9. doi:10.1038/ni1541
-
(2007)
Nat Immunol
, vol.8
, pp. 1380-1389
-
-
Awasthi, A.1
Carrier, Y.2
Peron, J.P.3
Bettelli, E.4
Kamanaka, M.5
Flavell, R.A.6
-
14
-
-
17144405680
-
Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma
-
Hawrylowicz CM, O'Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol (2005) 5:271-83. doi:10.1038/nri1589
-
(2005)
Nat Rev Immunol
, vol.5
, pp. 271-283
-
-
Hawrylowicz, C.M.1
O'Garra, A.2
-
15
-
-
79957576097
-
Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells
-
Magnani CF, Alberigo G, Bacchetta R, Serafini G, Andreani M, Roncarolo MG, et al. Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells. Eur J Immunol (2011) 6:1652-62. doi:10.1002/eji.201041120
-
(2011)
Eur J Immunol
, vol.6
, pp. 1652-1662
-
-
Magnani, C.F.1
Alberigo, G.2
Bacchetta, R.3
Serafini, G.4
Andreani, M.5
Roncarolo, M.G.6
-
16
-
-
77953116038
-
Cutting edge: human latency-associated peptide+ T cells: a novel regulatory T cell subset
-
Gandhi R, Farez MF, Wang Y, Kozoriz D, Quintana FJ, Weiner HL. Cutting edge: human latency-associated peptide+ T cells: a novel regulatory T cell subset. J Immunol (2010) 184:4620-4. doi:10.4049/jimmunol.0903329
-
(2010)
J Immunol
, vol.184
, pp. 4620-4624
-
-
Gandhi, R.1
Farez, M.F.2
Wang, Y.3
Kozoriz, D.4
Quintana, F.J.5
Weiner, H.L.6
-
17
-
-
85027947787
-
Induction of colonic regulatory T cells by indigenous Clostridium species
-
Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science (2011) 331:337-41. doi:10.1126/science.1198469
-
(2011)
Science
, vol.331
, pp. 337-341
-
-
Atarashi, K.1
Tanoue, T.2
Shima, T.3
Imaoka, A.4
Kuwahara, T.5
Momose, Y.6
-
18
-
-
84893708726
-
Mucosal immunology: bacteria get T(Reg) cells into shape
-
Kugelberg E. Mucosal immunology: bacteria get T(Reg) cells into shape. Nat Rev Immunol (2014) 14:2-3. doi:10.1038/nri3794
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 2-3
-
-
Kugelberg, E.1
-
19
-
-
20444434616
-
Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease
-
Maul J, Loddenkemper C, Mundt P, Berg E, Giese T, Stallmach A, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology (2005) 128:1868-78. doi:10.1053/j.gastro.2005.03.043
-
(2005)
Gastroenterology
, vol.128
, pp. 1868-1878
-
-
Maul, J.1
Loddenkemper, C.2
Mundt, P.3
Berg, E.4
Giese, T.5
Stallmach, A.6
-
20
-
-
78649526238
-
Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases
-
Buckner JH. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol (2010) 10:849-59. doi:10.1038/nri2889
-
(2010)
Nat Rev Immunol
, vol.10
, pp. 849-859
-
-
Buckner, J.H.1
-
21
-
-
84857063957
-
Induction of Treg cells in the mouse colonic mucosa: a central mechanism to maintain host-microbiota homeostasis
-
Tanoue T, Honda K. Induction of Treg cells in the mouse colonic mucosa: a central mechanism to maintain host-microbiota homeostasis. Semin Immunol (2012) 24:50-7. doi:10.1016/j.smim.2011.11.009
-
(2012)
Semin Immunol
, vol.24
, pp. 50-57
-
-
Tanoue, T.1
Honda, K.2
-
23
-
-
84900423596
-
CD4CD8alphaalpha lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease
-
Sarrabayrouse G, Bossard C, Chauvin JM, Jarry A, Meurette G, Quevrain E, et al. CD4CD8alphaalpha lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. PLoS Biol (2014) 12:e1001833. doi:10.1371/journal.pbio.1001833
-
(2014)
PLoS Biol
, vol.12
-
-
Sarrabayrouse, G.1
Bossard, C.2
Chauvin, J.M.3
Jarry, A.4
Meurette, G.5
Quevrain, E.6
-
24
-
-
84881477044
-
Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
-
Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature (2013) 500:232-6. doi:10.1038/nature12331
-
(2013)
Nature
, vol.500
, pp. 232-236
-
-
Atarashi, K.1
Tanoue, T.2
Oshima, K.3
Suda, W.4
Nagano, Y.5
Nishikawa, H.6
-
25
-
-
84898679249
-
Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
-
Goto Y, Panea C, Nakato G, Cebula A, Lee C, Diez MG, et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity (2014) 40:594-607. doi:10.1016/j.immuni.2014.03.005
-
(2014)
Immunity
, vol.40
, pp. 594-607
-
-
Goto, Y.1
Panea, C.2
Nakato, G.3
Cebula, A.4
Lee, C.5
Diez, M.G.6
-
26
-
-
0037478707
-
Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces
-
Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HL. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol (2003) 7:4320-4. doi:10.1128/AEM.69.7.4320-4324.2003
-
(2003)
Appl Environ Microbiol
, vol.7
, pp. 4320-4324
-
-
Hold, G.L.1
Schwiertz, A.2
Aminov, R.I.3
Blaut, M.4
Flint, H.L.5
-
27
-
-
84881559009
-
Faecalibacterium prausnitzii and human intestinal health
-
Miquel S, Martin R, Rossi O, Bermudez-Humaran LG, Chatel JM, Sokol H, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol (2013) 16:255-61. doi:10.1016/j.mib.2013.06.003
-
(2013)
Curr Opin Microbiol
, vol.16
, pp. 255-261
-
-
Miquel, S.1
Martin, R.2
Rossi, O.3
Bermudez-Humaran, L.G.4
Chatel, J.M.5
Sokol, H.6
-
28
-
-
55949124035
-
Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients
-
Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A (2008) 105:16731-6. doi:10.1073/pnas.0804812105
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 16731-16736
-
-
Sokol, H.1
Pigneur, B.2
Watterlot, L.3
Lakhdari, O.4
Bermudez-Humaran, L.G.5
Gratadoux, J.J.6
-
29
-
-
66249129571
-
Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease
-
Willing B, Halfvarson J, Dicksved J, Rosenquist M, Jarnerot G, Engstrand L, et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis (2009) 15:653-60. doi:10.1002/ibd.20783
-
(2009)
Inflamm Bowel Dis
, vol.15
, pp. 653-660
-
-
Willing, B.1
Halfvarson, J.2
Dicksved, J.3
Rosenquist, M.4
Jarnerot, G.5
Engstrand, L.6
-
31
-
-
70349488325
-
Low counts of Faecalibacterium prausnitzii in colitis microbiota
-
Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis (2009) 15:1183-9. doi:10.1002/ibd.20903
-
(2009)
Inflamm Bowel Dis
, vol.15
, pp. 1183-1189
-
-
Sokol, H.1
Seksik, P.2
Furet, J.P.3
Firmesse, O.4
Nion-Larmurier, I.5
Beaugerie, L.6
-
32
-
-
84904048875
-
A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis
-
Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut (2013) 63:1275-83. doi:10.1136/gutjnl-2013-304833
-
(2013)
Gut
, vol.63
, pp. 1275-1283
-
-
Machiels, K.1
Joossens, M.2
Sabino, J.3
De Preter, V.4
Arijs, I.5
Eeckhaut, V.6
-
33
-
-
84898738612
-
The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis model
-
Martin R, Chain F, Miquel S, Lu J, Gratadoux JJ, Sokol H, et al. The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis model. Inflamm Bowel Dis (2014) 20:417-30. doi:10.1097/01.MIB.0000440815.76627.64
-
(2014)
Inflamm Bowel Dis
, vol.20
, pp. 417-430
-
-
Martin, R.1
Chain, F.2
Miquel, S.3
Lu, J.4
Gratadoux, J.J.5
Sokol, H.6
-
34
-
-
84960373289
-
Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease.
-
Quévrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut (2015). doi:10.1136/gutjnl-2014-307649
-
(2015)
Gut
-
-
Quévrain, E.1
Maubert, M.A.2
Michon, C.3
Chain, F.4
Marquant, R.5
Tailhades, J.6
-
35
-
-
84880275285
-
Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells
-
Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med (2013) 19:739-46. doi:10.1038/nm.3179
-
(2013)
Nat Med
, vol.19
, pp. 739-746
-
-
Gagliani, N.1
Magnani, C.F.2
Huber, S.3
Gianolini, M.E.4
Pala, M.5
Licona-Limon, P.6
-
36
-
-
0037385330
-
Foxp3 programs the development and function of CD4+CD25+ regulatory T cells
-
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol (2003) 4:330-6. doi:10.1038/ni904
-
(2003)
Nat Immunol
, vol.4
, pp. 330-336
-
-
Fontenot, J.D.1
Gavin, M.A.2
Rudensky, A.Y.3
-
37
-
-
84901233628
-
Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells
-
Arvey A, van der Veeken J, Samstein RM, Feng Y, Stamatoyannopoulos JA, Rudensky AY. Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat Immunol (2007) 15:580-7. doi:10.1038/ni.2868
-
(2007)
Nat Immunol
, vol.15
, pp. 580-587
-
-
Arvey, A.1
van der Veeken, J.2
Samstein, R.M.3
Feng, Y.4
Stamatoyannopoulos, J.A.5
Rudensky, A.Y.6
-
39
-
-
84921786777
-
Regional specialization within the intestinal immune system
-
Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol (2014) 14:667-85. doi:10.1038/nri3738
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 667-685
-
-
Mowat, A.M.1
Agace, W.W.2
-
40
-
-
84862637797
-
Gut immune maturation depends on colonization with a host-specific microbiota
-
Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell (2012) 149:1578-93. doi:10.1016/j.cell.2012.04.037
-
(2012)
Cell
, vol.149
, pp. 1578-1593
-
-
Chung, H.1
Pamp, S.J.2
Hill, J.A.3
Surana, N.K.4
Edelman, S.M.5
Troy, E.B.6
-
41
-
-
58149154812
-
Digestive histopathological presentation of IPEX syndrome
-
Patey-Mariaud de Serre N, Canioni D, Ganousse S, Rieux-Laucat F, Goulet O, Ruemmele F, et al. Digestive histopathological presentation of IPEX syndrome. Mod Pathol (2009) 22:95-102. doi:10.1038/modpathol.2008.161
-
(2009)
Mod Pathol
, vol.22
, pp. 95-102
-
-
Patey-Mariaud de Serre, N.1
Canioni, D.2
Ganousse, S.3
Rieux-Laucat, F.4
Goulet, O.5
Ruemmele, F.6
-
43
-
-
82555170222
-
CD8alphaalpha and -alphabeta isotypes are equally recruited to the immunological synapse through their ability to bind to MHC class I
-
Rybakin V, Clamme JP, Ampudia J, Yachi PP, Gascoigne NR. CD8alphaalpha and -alphabeta isotypes are equally recruited to the immunological synapse through their ability to bind to MHC class I. EMBO Rep (2011) 12:1251-6. doi:10.1038/embor.2011.209
-
(2011)
EMBO Rep
, vol.12
, pp. 1251-1256
-
-
Rybakin, V.1
Clamme, J.P.2
Ampudia, J.3
Yachi, P.P.4
Gascoigne, N.R.5
-
44
-
-
0035976604
-
T cell responses modulated through interaction between CD8alphaalpha and the nonclassical MHC class I molecule, TL
-
Leishman AJ, Naidenko OV, Attinger A, Koning F, Lena CJ, Xiong Y, et al. T cell responses modulated through interaction between CD8alphaalpha and the nonclassical MHC class I molecule, TL. Science (2001) 294:1936-9. doi:10.1126/science.1063564
-
(2001)
Science
, vol.294
, pp. 1936-1939
-
-
Leishman, A.J.1
Naidenko, O.V.2
Attinger, A.3
Koning, F.4
Lena, C.J.5
Xiong, Y.6
-
45
-
-
0036201604
-
A non-class I MHC intestinal epithelial surface glycoprotein, gp180, binds to CD8
-
Campbell NA, Park MS, Toy LS, Yio XY, Devine L, Kavathas P, et al. A non-class I MHC intestinal epithelial surface glycoprotein, gp180, binds to CD8. Clin Immunol (2002) 102:267-74. doi:10.1006/clim.2001.5170
-
(2002)
Clin Immunol
, vol.102
, pp. 267-274
-
-
Campbell, N.A.1
Park, M.S.2
Toy, L.S.3
Yio, X.Y.4
Devine, L.5
Kavathas, P.6
-
46
-
-
84899559485
-
Characterizing CEACAM5 interaction with CD8alpha and CD1d in intestinal homeostasis
-
Roda G, Jianyu X, Park MS, DeMarte L, Hovhannisyan Z, Couri R, et al. Characterizing CEACAM5 interaction with CD8alpha and CD1d in intestinal homeostasis. Mucosal Immunol (2014) 7:615-24. doi:10.1038/mi.2013.80
-
(2014)
Mucosal Immunol
, vol.7
, pp. 615-624
-
-
Roda, G.1
Jianyu, X.2
Park, M.S.3
DeMarte, L.4
Hovhannisyan, Z.5
Couri, R.6
-
47
-
-
14544283976
-
Activation of a unique population of CD8(+) T cells by intestinal epithelial cells
-
Allez M, Brimnes J, Shao L, Dotan I, Nakazawa A, Mayer L. Activation of a unique population of CD8(+) T cells by intestinal epithelial cells. Ann N Y Acad Sci (2004) 1029:22-35. doi:10.1196/annals.1309.004
-
(2004)
Ann N Y Acad Sci
, vol.1029
, pp. 22-35
-
-
Allez, M.1
Brimnes, J.2
Shao, L.3
Dotan, I.4
Nakazawa, A.5
Mayer, L.6
-
48
-
-
80054897931
-
Mucosal memory CD8(+) T cells are selected in the periphery by an MHC class I molecule
-
Huang Y, Park Y, Wang-Zhu Y, Larange A, Arens R, Bernardo I, et al. Mucosal memory CD8(+) T cells are selected in the periphery by an MHC class I molecule. Nat Immunol (2011) 12:1086-95. doi:10.1038/ni.2106
-
(2011)
Nat Immunol
, vol.12
, pp. 1086-1095
-
-
Huang, Y.1
Park, Y.2
Wang-Zhu, Y.3
Larange, A.4
Arens, R.5
Bernardo, I.6
-
49
-
-
84908123494
-
Continuous requirement for the TCR in regulatory T cell function
-
Levine AG, Arvey A, Jin W, Rudensky AY. Continuous requirement for the TCR in regulatory T cell function. Nat Immunol (2010) 15:1070-8. doi:10.1038/ni.3004
-
(2010)
Nat Immunol
, vol.15
, pp. 1070-1078
-
-
Levine, A.G.1
Arvey, A.2
Jin, W.3
Rudensky, A.Y.4
-
50
-
-
84904384753
-
Foxp3(+) T cells regulate immunoglobulinA selection and facilitate diversification of bacterial species responsible for immune homeostasis
-
Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, et al. Foxp3(+) T cells regulate immunoglobulinA selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity (2014) 41:152-65. doi:10.1016/j.immuni.2014.05.016
-
(2014)
Immunity
, vol.41
, pp. 152-165
-
-
Kawamoto, S.1
Maruya, M.2
Kato, L.M.3
Suda, W.4
Atarashi, K.5
Doi, Y.6
|