메뉴 건너뛰기




Volumn 57, Issue 3, 2009, Pages 483-487

Analytical solution of a fractional diffusion equation by variational iteration method

Author keywords

Analytical approximate solution; Fractional diffusion equation; Mittag Leffler function; Variational iteration method

Indexed keywords

DIFFUSION; OSCILLATORS (MECHANICAL); PARTICLE SIZE ANALYSIS;

EID: 58149263050     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2008.09.045     Document Type: Article
Times cited : (191)

References (14)
  • 4
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of Fractional differential equations
    • Diethelm K., and Ford N.J. Analysis of Fractional differential equations. J. Math. Anal. Appl. 265 (2002) 229-248
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 5
    • 0001618393 scopus 로고    scopus 로고
    • An Algorithm for the numerical solutions of differential equations of Fractional order
    • Diethelm K. An Algorithm for the numerical solutions of differential equations of Fractional order. Elec. Trans. Numer. 5 (1997) 1-6
    • (1997) Elec. Trans. Numer. , vol.5 , pp. 1-6
    • Diethelm, K.1
  • 6
    • 0032307661 scopus 로고    scopus 로고
    • Approximate analytical solution for seepage flow with fractional derivatives in porous media
    • He J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Engrg. 167 (1998) 57-68
    • (1998) Comput. Methods Appl. Mech. Engrg. , vol.167 , pp. 57-68
    • He, J.H.1
  • 7
    • 0032308350 scopus 로고    scopus 로고
    • Approximate solution of nonlinear differential equations with convolution product nonlinearities
    • He J.H. Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comput. Methods Appl. Mech. Engrg. 167 (1998) 69-73
    • (1998) Comput. Methods Appl. Mech. Engrg. , vol.167 , pp. 69-73
    • He, J.H.1
  • 8
    • 0000092673 scopus 로고    scopus 로고
    • Variational Iteration Method - a kind of nonlinear analytical technique: Some examples
    • He J.H. Variational Iteration Method - a kind of nonlinear analytical technique: Some examples. Internat. J. Nonlinear Mech. 34 (1999) 699-708
    • (1999) Internat. J. Nonlinear Mech. , vol.34 , pp. 699-708
    • He, J.H.1
  • 9
    • 0040184009 scopus 로고    scopus 로고
    • Variational Iteration Method for autonomous ordinary differential systems
    • He J.H. Variational Iteration Method for autonomous ordinary differential systems. Appl. Math. Comput. 114 (2000) 115-123
    • (2000) Appl. Math. Comput. , vol.114 , pp. 115-123
    • He, J.H.1
  • 10
    • 33645972898 scopus 로고    scopus 로고
    • Some asymptotic methods for strongly nonlinear equations
    • He J.H. Some asymptotic methods for strongly nonlinear equations. Internat. J. Modern Phys. B 20 (2006) 1141-1191
    • (2006) Internat. J. Modern Phys. B , vol.20 , pp. 1141-1191
    • He, J.H.1
  • 11
    • 0037174280 scopus 로고    scopus 로고
    • Analytical approximate solutions for nonlinear Fractional differential equations
    • Shawagfeh N.T. Analytical approximate solutions for nonlinear Fractional differential equations. Appl. Math. Comput. 131 (2002) 517-529
    • (2002) Appl. Math. Comput. , vol.131 , pp. 517-529
    • Shawagfeh, N.T.1
  • 12
    • 58149221645 scopus 로고    scopus 로고
    • K. Diethelm, N.J. Ford, The numerical solutions of linear and nonlinear Fractional differential equations involving Fractional derivatives of several orders, Numerical Analysis Report, V.379, Manchester Centre for Computational Math., England, 2001
    • K. Diethelm, N.J. Ford, The numerical solutions of linear and nonlinear Fractional differential equations involving Fractional derivatives of several orders, Numerical Analysis Report, V.379, Manchester Centre for Computational Math., England, 2001
  • 13
    • 33748425302 scopus 로고    scopus 로고
    • Numerical comparison of methods for solving linear differential equations of Fractional order
    • Momani S., and Odibat Z. Numerical comparison of methods for solving linear differential equations of Fractional order. Chaos Solutions Fractals 31 (2007) 1248-1255
    • (2007) Chaos Solutions Fractals , vol.31 , pp. 1248-1255
    • Momani, S.1    Odibat, Z.2
  • 14
    • 33344463928 scopus 로고    scopus 로고
    • Analytical solution of a Fractional diffusion equation by Adomian decomposition method
    • Saha Ray S., and Bera R.K. Analytical solution of a Fractional diffusion equation by Adomian decomposition method. Appl. Math. Comput. 174 (2006) 329-336
    • (2006) Appl. Math. Comput. , vol.174 , pp. 329-336
    • Saha Ray, S.1    Bera, R.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.