-
17
-
-
0030464353
-
Fractional relaxation-oscillation and fractional diffusion-wave phenomena. chaos
-
Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. chaos. Solitons Fractals 1996, 7(9):1461-1477.
-
(1996)
Solitons Fractals
, vol.7
, Issue.9
, pp. 1461-1477
-
-
Mainardi, F.1
-
18
-
-
78649351641
-
Investigation on fractional and fractal derivative relaxation-oscillation models
-
Chen W., Zhang X.-D., Korošak D. Investigation on fractional and fractal derivative relaxation-oscillation models. Int J Nonlin Sci Numer Simul 2010, 11(1):3-10.
-
(2010)
Int J Nonlin Sci Numer Simul
, vol.11
, Issue.1
, pp. 3-10
-
-
Chen, W.1
Zhang, X.-D.2
Korošak, D.3
-
23
-
-
33751184406
-
ε-expansion and the fractional oscillator
-
Tofighi A., Pour H.N. ε-expansion and the fractional oscillator. Phys A: Stat Mech Appl 2007, 374(1):41-45.
-
(2007)
Phys A: Stat Mech Appl
, vol.374
, Issue.1
, pp. 41-45
-
-
Tofighi, A.1
Pour, H.N.2
-
24
-
-
68749107333
-
New approach for the analysis of damped vibrations of fractional oscillators
-
Rossikhin Y.A., Shitikova M.V. New approach for the analysis of damped vibrations of fractional oscillators. Shock Vibration 2009, 16(4):365-387.
-
(2009)
Shock Vibration
, vol.16
, Issue.4
, pp. 365-387
-
-
Rossikhin, Y.A.1
Shitikova, M.V.2
-
26
-
-
38349062331
-
A perturbative study of fractional relaxation phenomena
-
Tofighi A., Golestani A. A perturbative study of fractional relaxation phenomena. Phys A: Stat Mech Appl 2008, 387(8):1807-1817.
-
(2008)
Phys A: Stat Mech Appl
, vol.387
, Issue.8
, pp. 1807-1817
-
-
Tofighi, A.1
Golestani, A.2
-
27
-
-
84860233351
-
Nonlinear fractional relaxation
-
Tofighi A. Nonlinear fractional relaxation. Pramana 2012, 78(4):549-554.
-
(2012)
Pramana
, vol.78
, Issue.4
, pp. 549-554
-
-
Tofighi, A.1
-
29
-
-
84903649851
-
A review of definitions for fractional derivatives and integral
-
de Oliveira E.C., Machado J.A.T. A review of definitions for fractional derivatives and integral. Math Probl Eng 2014, 2014:1-6.
-
(2014)
Math Probl Eng
, vol.2014
, pp. 1-6
-
-
de Oliveira, E.C.1
Machado, J.A.T.2
-
30
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
Kolwankar K.M., Gangal A.D. Local fractional Fokker-Planck equation. Phys Rev Lett 1998, 80(2):214.
-
(1998)
Phys Rev Lett
, vol.80
, Issue.2
, pp. 214
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
31
-
-
84890036462
-
Maxwell's equations on cantor sets: a local fractional approach
-
Zhao Y., Baleanu D., Cattani C., Cheng D.F., Yang X.-J. Maxwell's equations on cantor sets: a local fractional approach. Adv High Energy Phys 2013, 686371.
-
(2013)
Adv High Energy Phys
, pp. 686371
-
-
Zhao, Y.1
Baleanu, D.2
Cattani, C.3
Cheng, D.F.4
Yang, X.-J.5
-
32
-
-
84878016367
-
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
-
Yang X.J., Srivastava H.M., He J.H., Baleanu D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys Lett A 2013, 377(21):1696-1700.
-
(2013)
Phys Lett A
, vol.377
, Issue.21
, pp. 1696-1700
-
-
Yang, X.J.1
Srivastava, H.M.2
He, J.H.3
Baleanu, D.4
-
33
-
-
84904691196
-
-
Springer, J.A. Tenreiro Machado, D. Baleanu, A.C.J. Luo (Eds.)
-
Yang X.-J., Baleanu D., Machado J.A.T. Application of the local fractional Fourier series to fractal signals 2014, Springer. J.A. Tenreiro Machado, D. Baleanu, A.C.J. Luo (Eds.).
-
(2014)
Application of the local fractional Fourier series to fractal signals
-
-
Yang, X.-J.1
Baleanu, D.2
Machado, J.A.T.3
-
34
-
-
84879324154
-
Fractal heat conduction problem solved by local fractional variation iteration method
-
Yang X.-J., Baleanu D. Fractal heat conduction problem solved by local fractional variation iteration method. Therm Sci 2013, 17(2):625-628.
-
(2013)
Therm Sci
, vol.17
, Issue.2
, pp. 625-628
-
-
Yang, X.-J.1
Baleanu, D.2
-
35
-
-
84903541046
-
Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
-
Yang X.-J., Hristov J., Srivastava H.M., Ahmad B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr Appl Anal 2014, 2014:1-10.
-
(2014)
Abstr Appl Anal
, vol.2014
, pp. 1-10
-
-
Yang, X.-J.1
Hristov, J.2
Srivastava, H.M.3
Ahmad, B.4
-
37
-
-
84920885354
-
On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics
-
Zhang Y., Baleanu D., Yang X.-J. On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics. Entropy 2014, 16(12):6254-6262.
-
(2014)
Entropy
, vol.16
, Issue.12
, pp. 6254-6262
-
-
Zhang, Y.1
Baleanu, D.2
Yang, X.-J.3
-
38
-
-
64249151881
-
Static-kinematic fractional operators for fractal and non-local solids
-
Carpinteri A., Cornetti P., Sapora A. Static-kinematic fractional operators for fractal and non-local solids. ZAMM - J Appl Math Mech 2009, 89(3):207-217.
-
(2009)
ZAMM - J Appl Math Mech
, vol.89
, Issue.3
, pp. 207-217
-
-
Carpinteri, A.1
Cornetti, P.2
Sapora, A.3
-
39
-
-
77049111800
-
Diffusion problems in fractal media defined on cantor sets
-
Carpinteri A., Sapora A. Diffusion problems in fractal media defined on cantor sets. ZAMM - J Appl Math Mech 2010, 90(3):203-210.
-
(2010)
ZAMM - J Appl Math Mech
, vol.90
, Issue.3
, pp. 203-210
-
-
Carpinteri, A.1
Sapora, A.2
-
40
-
-
84902192003
-
Local fractional Sumudu transform with application to IVPS on cantor sets
-
Srivastava H.M., Golmankhaneh A.K., Baleanu D., Yang X.-J. Local fractional Sumudu transform with application to IVPS on cantor sets. Abstr Appl Anal 2014, 2014:1-7.
-
(2014)
Abstr Appl Anal
, vol.2014
, pp. 1-7
-
-
Srivastava, H.M.1
Golmankhaneh, A.K.2
Baleanu, D.3
Yang, X.-J.4
-
41
-
-
84939986878
-
Local fractional similarity solution for the diffusion equation defined on cantor sets
-
Yang X.J., Baleanu D., Srivastava H.M. Local fractional similarity solution for the diffusion equation defined on cantor sets. Appl Math Lett 2015, 47:54-60.
-
(2015)
Appl Math Lett
, vol.47
, pp. 54-60
-
-
Yang, X.J.1
Baleanu, D.2
Srivastava, H.M.3
|