메뉴 건너뛰기




Volumn 29, Issue 1-3, 2015, Pages 499-504

An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives

Author keywords

Asymptotic approximation; Damped vibrations; Linear oscillator; Local fractional derivative

Indexed keywords

FRACTALS; OSCILLATORS (MECHANICAL); VIBRATION ANALYSIS;

EID: 84937390522     PISSN: 10075704     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cnsns.2015.06.006     Document Type: Article
Times cited : (97)

References (41)
  • 17
    • 0030464353 scopus 로고    scopus 로고
    • Fractional relaxation-oscillation and fractional diffusion-wave phenomena. chaos
    • Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. chaos. Solitons Fractals 1996, 7(9):1461-1477.
    • (1996) Solitons Fractals , vol.7 , Issue.9 , pp. 1461-1477
    • Mainardi, F.1
  • 18
    • 78649351641 scopus 로고    scopus 로고
    • Investigation on fractional and fractal derivative relaxation-oscillation models
    • Chen W., Zhang X.-D., Korošak D. Investigation on fractional and fractal derivative relaxation-oscillation models. Int J Nonlin Sci Numer Simul 2010, 11(1):3-10.
    • (2010) Int J Nonlin Sci Numer Simul , vol.11 , Issue.1 , pp. 3-10
    • Chen, W.1    Zhang, X.-D.2    Korošak, D.3
  • 22
    • 33744831468 scopus 로고    scopus 로고
    • Dynamics with low-level fractionality
    • Tarasov V.E., Zaslavsky G.M. Dynamics with low-level fractionality. Phys A: Stat Mech Appl 2006, 368(2):399-415.
    • (2006) Phys A: Stat Mech Appl , vol.368 , Issue.2 , pp. 399-415
    • Tarasov, V.E.1    Zaslavsky, G.M.2
  • 23
    • 33751184406 scopus 로고    scopus 로고
    • ε-expansion and the fractional oscillator
    • Tofighi A., Pour H.N. ε-expansion and the fractional oscillator. Phys A: Stat Mech Appl 2007, 374(1):41-45.
    • (2007) Phys A: Stat Mech Appl , vol.374 , Issue.1 , pp. 41-45
    • Tofighi, A.1    Pour, H.N.2
  • 24
    • 68749107333 scopus 로고    scopus 로고
    • New approach for the analysis of damped vibrations of fractional oscillators
    • Rossikhin Y.A., Shitikova M.V. New approach for the analysis of damped vibrations of fractional oscillators. Shock Vibration 2009, 16(4):365-387.
    • (2009) Shock Vibration , vol.16 , Issue.4 , pp. 365-387
    • Rossikhin, Y.A.1    Shitikova, M.V.2
  • 26
    • 38349062331 scopus 로고    scopus 로고
    • A perturbative study of fractional relaxation phenomena
    • Tofighi A., Golestani A. A perturbative study of fractional relaxation phenomena. Phys A: Stat Mech Appl 2008, 387(8):1807-1817.
    • (2008) Phys A: Stat Mech Appl , vol.387 , Issue.8 , pp. 1807-1817
    • Tofighi, A.1    Golestani, A.2
  • 27
    • 84860233351 scopus 로고    scopus 로고
    • Nonlinear fractional relaxation
    • Tofighi A. Nonlinear fractional relaxation. Pramana 2012, 78(4):549-554.
    • (2012) Pramana , vol.78 , Issue.4 , pp. 549-554
    • Tofighi, A.1
  • 29
    • 84903649851 scopus 로고    scopus 로고
    • A review of definitions for fractional derivatives and integral
    • de Oliveira E.C., Machado J.A.T. A review of definitions for fractional derivatives and integral. Math Probl Eng 2014, 2014:1-6.
    • (2014) Math Probl Eng , vol.2014 , pp. 1-6
    • de Oliveira, E.C.1    Machado, J.A.T.2
  • 30
    • 0001707390 scopus 로고    scopus 로고
    • Local fractional Fokker-Planck equation
    • Kolwankar K.M., Gangal A.D. Local fractional Fokker-Planck equation. Phys Rev Lett 1998, 80(2):214.
    • (1998) Phys Rev Lett , vol.80 , Issue.2 , pp. 214
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 32
    • 84878016367 scopus 로고    scopus 로고
    • Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
    • Yang X.J., Srivastava H.M., He J.H., Baleanu D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys Lett A 2013, 377(21):1696-1700.
    • (2013) Phys Lett A , vol.377 , Issue.21 , pp. 1696-1700
    • Yang, X.J.1    Srivastava, H.M.2    He, J.H.3    Baleanu, D.4
  • 34
    • 84879324154 scopus 로고    scopus 로고
    • Fractal heat conduction problem solved by local fractional variation iteration method
    • Yang X.-J., Baleanu D. Fractal heat conduction problem solved by local fractional variation iteration method. Therm Sci 2013, 17(2):625-628.
    • (2013) Therm Sci , vol.17 , Issue.2 , pp. 625-628
    • Yang, X.-J.1    Baleanu, D.2
  • 35
    • 84903541046 scopus 로고    scopus 로고
    • Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
    • Yang X.-J., Hristov J., Srivastava H.M., Ahmad B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr Appl Anal 2014, 2014:1-10.
    • (2014) Abstr Appl Anal , vol.2014 , pp. 1-10
    • Yang, X.-J.1    Hristov, J.2    Srivastava, H.M.3    Ahmad, B.4
  • 36
    • 84880084367 scopus 로고    scopus 로고
    • Systems of Navier-Stokes equations on cantor sets
    • Yang X.-J., Baleanu D., Machado J.A.T. Systems of Navier-Stokes equations on cantor sets. Math Probl Eng 2013, 2013:1-8.
    • (2013) Math Probl Eng , vol.2013 , pp. 1-8
    • Yang, X.-J.1    Baleanu, D.2    Machado, J.A.T.3
  • 37
    • 84920885354 scopus 로고    scopus 로고
    • On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics
    • Zhang Y., Baleanu D., Yang X.-J. On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics. Entropy 2014, 16(12):6254-6262.
    • (2014) Entropy , vol.16 , Issue.12 , pp. 6254-6262
    • Zhang, Y.1    Baleanu, D.2    Yang, X.-J.3
  • 38
    • 64249151881 scopus 로고    scopus 로고
    • Static-kinematic fractional operators for fractal and non-local solids
    • Carpinteri A., Cornetti P., Sapora A. Static-kinematic fractional operators for fractal and non-local solids. ZAMM - J Appl Math Mech 2009, 89(3):207-217.
    • (2009) ZAMM - J Appl Math Mech , vol.89 , Issue.3 , pp. 207-217
    • Carpinteri, A.1    Cornetti, P.2    Sapora, A.3
  • 39
    • 77049111800 scopus 로고    scopus 로고
    • Diffusion problems in fractal media defined on cantor sets
    • Carpinteri A., Sapora A. Diffusion problems in fractal media defined on cantor sets. ZAMM - J Appl Math Mech 2010, 90(3):203-210.
    • (2010) ZAMM - J Appl Math Mech , vol.90 , Issue.3 , pp. 203-210
    • Carpinteri, A.1    Sapora, A.2
  • 40
  • 41
    • 84939986878 scopus 로고    scopus 로고
    • Local fractional similarity solution for the diffusion equation defined on cantor sets
    • Yang X.J., Baleanu D., Srivastava H.M. Local fractional similarity solution for the diffusion equation defined on cantor sets. Appl Math Lett 2015, 47:54-60.
    • (2015) Appl Math Lett , vol.47 , pp. 54-60
    • Yang, X.J.1    Baleanu, D.2    Srivastava, H.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.