메뉴 건너뛰기




Volumn 43, Issue 2, 2005, Pages 388-397

Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery

Author keywords

Anomaly detection; Hyperspectral images; Kernel based learning; Kernels; Target detection

Indexed keywords

ALGORITHMS; BAND STRUCTURE; CLUTTER (INFORMATION THEORY); DATA ACQUISITION; ERROR DETECTION; IMAGE SENSORS; INFRARED RADIATION; NONLINEAR CONTROL SYSTEMS; PATTERN RECOGNITION; SIGNAL NOISE MEASUREMENT; SPECTROMETERS;

EID: 13144293109     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2004.841487     Document Type: Article
Times cited : (736)

References (29)
  • 1
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • Jan.
    • D. Manolakis and G. Shaw, "Detection algorithms for hyperspectral imaging applications," IEEE Signal Process, Mag., vol. 19, no. 1, pp. 29-43, Jan. 2002.
    • (2002) IEEE Signal Process, Mag. , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 2
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Jul.
    • J. C. Harsanyi and C.-I. Chang, "Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, Jul. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 3
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • Oct.
    • I. S. Reed and X. Yu, "Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution," IEEE Trans. Acoust., Speech Signal Process., vol. 38, no. 10, pp. 1760-1770, Oct. 1990.
    • (1990) IEEE Trans. Acoust., Speech Signal Process. , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 4
    • 0006606953 scopus 로고    scopus 로고
    • Least squares subspace projection approach to mixed pixel classification for hyperspectral images
    • May
    • C.-I. Chang, X.-L. Zhao, M. L. G. Althouse, and J. J. Pan, "Least squares subspace projection approach to mixed pixel classification for hyperspectral images." IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 898-912, May 1998.
    • (1998) IEEE Trans. Geosci. Remote Sens. , vol.36 , Issue.3 , pp. 898-912
    • Chang, C.-I.1    Zhao, X.-L.2    Althouse, M.L.G.3    Pan, J.J.4
  • 5
    • 0033225639 scopus 로고    scopus 로고
    • Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions
    • Nov.
    • G. Healey and D. Slater, "Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2706-2717, Nov. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.6 , pp. 2706-2717
    • Healey, G.1    Slater, D.2
  • 6
  • 7
    • 0035309562 scopus 로고    scopus 로고
    • Efficient detection in hyperspectral imagery
    • Apr.
    • S. M. Schweizer and J. M. F. Moura, "Efficient detection in hyperspectral imagery," IEEE Trans. Image Process., vol. 10, no. 4, pp. 584-597, Apr. 2001.
    • (2001) IEEE Trans. Image Process. , vol.10 , Issue.4 , pp. 584-597
    • Schweizer, S.M.1    Moura, J.M.F.2
  • 9
    • 0035058461 scopus 로고    scopus 로고
    • An adaptive unsupervised segmentation algorithm based on iterative spectral dissimilarity measure for hyperspectral imagery
    • Jan.
    • H. Kwon, S. Z. Der, and N. M. Nasrabadi, "An adaptive unsupervised segmentation algorithm based on iterative spectral dissimilarity measure for hyperspectral imagery," Proc. SPIE, vol. 4310, pp. 144-152, Jan. 2001.
    • (2001) Proc. SPIE , vol.4310 , pp. 144-152
    • Kwon, H.1    Der, S.Z.2    Nasrabadi, N.M.3
  • 10
    • 0036395066 scopus 로고    scopus 로고
    • Stochastic compositional models applied to subpixel analysis of hyperspectral imagery
    • Jul.
    • D. W. J. Stein, "Stochastic compositional models applied to subpixel analysis of hyperspectral imagery." Proc. SPIE, vol. 4480, pp. 49-56, Jul. 2001.
    • (2001) Proc. SPIE , vol.4480 , pp. 49-56
    • Stein, D.W.J.1
  • 11
    • 0347603473 scopus 로고    scopus 로고
    • Adaptive anomaly detection using subspace separation for hyperspectral images
    • Nov.
    • H. Kwon, S. Z. Der, and N. M. Nasrabadi, "Adaptive anomaly detection using subspace separation for hyperspectral images," Opt. Eng., vol. 42, no. 11, pp. 3342-3351, Nov. 2003.
    • (2003) Opt. Eng. , vol.42 , Issue.11 , pp. 3342-3351
    • Kwon, H.1    Der, S.Z.2    Nasrabadi, N.M.3
  • 12
    • 0036613261 scopus 로고    scopus 로고
    • Anomaly detection and classification for hyperspectral imagery
    • Jun.
    • C.-I. Chang and S.-S. Chiang, "Anomaly detection and classification for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 6, pp. 1314-1325, Jun. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.6 , pp. 1314-1325
    • Chang, C.-I.1    Chiang, S.-S.2
  • 13
    • 0027646809 scopus 로고
    • Comparative performance analysis of adaptive multispectral detectors
    • Aug.
    • X. Yu and I. S. Reed, "Comparative performance analysis of adaptive multispectral detectors," IEEE Trans. Signal Process., vol. 41, no. 8, pp. 2639-2656, Aug. 1993.
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.8 , pp. 2639-2656
    • Yu, X.1    Reed, I.S.2
  • 14
    • 0034225127 scopus 로고    scopus 로고
    • Real-time hyperspectral detection and cuing
    • Jul.
    • C. M. Stellman, G. G. Hazel, F. Buchholtz, and J. V. Michalowicz, "Real-time hyperspectral detection and cuing," Opt. Eng., vol. 39, no. 7, pp. 1928-1935, Jul. 2000.
    • (2000) Opt. Eng. , vol.39 , Issue.7 , pp. 1928-1935
    • Stellman, C.M.1    Hazel, G.G.2    Buchholtz, F.3    Michalowicz, J.V.4
  • 16
    • 0037276932 scopus 로고    scopus 로고
    • Face recognition using kernel direct discriminant analysis algorithm
    • Jan.
    • J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, "Face recognition using kernel direct discriminant analysis algorithm," IEEE Trans. Neural Networks, vol. 14, no. 1, pp. 117-126, Jan. 2003.
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.1 , pp. 117-126
    • Lu, J.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 17
    • 0041995203 scopus 로고    scopus 로고
    • A generalized kernel approach to dissimilarity-based classification
    • P. P. Pekalska and E. R. P. W. Duin, "A generalized kernel approach to dissimilarity-based classification,'' J. Mach. Learn., vol. 2, pp. 175-211, 2001.
    • (2001) J. Mach. Learn. , vol.2 , pp. 175-211
    • Pekalska, P.P.1    Duin, E.R.P.W.2
  • 18
    • 0035111818 scopus 로고    scopus 로고
    • Nonlinear kernel-based statistical pattern analysis
    • Jan.
    • A. Ruiz and E. Lopez-de Teruel, "Nonlinear kernel-based statistical pattern analysis." IEEE Trans. Neural Networks, vol. 12, no. 1, pp. 16-32, Jan. 2001.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.1 , pp. 16-32
    • Ruiz, A.1    Lopez-De Teruel, E.2
  • 19
    • 10944229264 scopus 로고    scopus 로고
    • Kernel principal component analysis
    • B. Schökopf, A. J. Smola, and K.-R. Müller, "Kernel principal component analysis," Neural Comput., no. 10, pp. 1299-1319, 1999.
    • (1999) Neural Comput. , Issue.10 , pp. 1299-1319
    • Schökopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 20
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • G. Baudat and F. Anouar, "Generalized discriminant analysis using a kernel approach," Neural Comput., no. 12, pp. 2385-2404, 2000.
    • (2000) Neural Comput. , Issue.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 21
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • May
    • M. Girolami, "Mercer kernel-based clustering in feature space," IEEE Trans. Neural Networks, vol. 13, no. 3, pp. 780-784, May 2002.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1
  • 22
    • 13144300029 scopus 로고    scopus 로고
    • Hyperspectral target detection using kernel matched subspace detector
    • Singapore, Oct.
    • H. Kwon and N. M. Nasrabadi, "Hyperspectral target detection using kernel matched subspace detector," in Proc. IEEE Int. Conf. Image Processing, Singapore, Oct. 2004, pp. 3327-3330.
    • (2004) Proc. IEEE Int. Conf. Image Processing , pp. 3327-3330
    • Kwon, H.1    Nasrabadi, N.M.2
  • 24
    • 0035441827 scopus 로고    scopus 로고
    • Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators
    • Sep.
    • R. C. Williamson, A. J. Smola, and B Schölkopf, "Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators," IEEE Trans. Inf. Theory, vol. 47, no. 6, pp. 2516-2532, Sep. 2001.
    • (2001) IEEE Trans. Inf. Theory , vol.47 , Issue.6 , pp. 2516-2532
    • Williamson, R.C.1    Smola, A.J.2    Schölkopf, B.3
  • 25
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • F. R. Bach and M. I. Jordan, "Kernel independent component analysis," J. Mach. Learn. Res., vol. 47, pp. 1-48, 2002.
    • (2002) J. Mach. Learn. Res. , vol.47 , pp. 1-48
    • Bach, F.R.1    Jordan, M.I.2
  • 26
    • 0037972137 scopus 로고    scopus 로고
    • Shape statistics in kernel space for variational image segmentation
    • D. Cremers, T. Kohlberger, and B. Schölkopf, "Shape statistics in kernel space for variational image segmentation," Pattern Recognit., vol. 36, pp. 1929-1943, 2003.
    • (2003) Pattern Recognit. , vol.36 , pp. 1929-1943
    • Cremers, D.1    Kohlberger, T.2    Schölkopf, B.3
  • 28
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: A review
    • A. K. Jain, M. N. Murty, and P. J. Flynn, "Data clustering: A review," ACM Comput. Surv., vol. 31, no. 3, pp. 264-323, 1999.
    • (1999) ACM Comput. Surv. , vol.31 , Issue.3 , pp. 264-323
    • Jain, A.K.1    Murty, M.N.2    Flynn, P.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.