메뉴 건너뛰기




Volumn 53, Issue 3, 2015, Pages 1463-1474

Collaborative representation for hyperspectral anomaly detection

Author keywords

Anomaly detection; Collaborative representation; Hyperspectral imagery (HSI); Kernel collaborative representation; Sparse representation

Indexed keywords

FINANCIAL DATA PROCESSING; PRINCIPAL COMPONENT ANALYSIS; REMOTE SENSING; SPECTROSCOPY;

EID: 84907455189     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2014.2343955     Document Type: Article
Times cited : (593)

References (42)
  • 1
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithm for hyperspectral imaging applications
    • Jan.
    • D. Manolakis and G. Shaw, "Detection algorithm for hyperspectral imaging applications," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 29-43, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 2
    • 85032751921 scopus 로고    scopus 로고
    • Anomaly detection from hyperspectral imagery
    • Jan.
    • D. W. J. Stein et al., "Anomaly detection from hyperspectral imagery," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 58-69, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 58-69
    • Stein, D.W.J.1
  • 3
    • 0034248248 scopus 로고    scopus 로고
    • Hyperspectral imagery: Clutter adaption in anomaly detection
    • Aug.
    • S. M. Schweizer and J. M. F. Moura, "Hyperspectral imagery: Clutter adaption in anomaly detection," IEEE Trans. Inf. Theory, vol. 46, no. 5, pp. 1855-1871, Aug. 2000.
    • (2000) IEEE Trans. Inf. Theory , vol.46 , Issue.5 , pp. 1855-1871
    • Schweizer, S.M.1    Moura, J.M.F.2
  • 4
    • 84861732641 scopus 로고    scopus 로고
    • Target detection under misspecified models in hyperspectral images
    • Apr.
    • P. Bajorski, "Target detection under misspecified models in hyperspectral images," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 470-477, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 470-477
    • Bajorski, P.1
  • 6
    • 66249142802 scopus 로고    scopus 로고
    • Regularized spectral matched filter for target recognition in hyperspectral imagery
    • Mar.
    • N. M. Nasrabadi, "Regularized spectral matched filter for target recognition in hyperspectral imagery," IEEE Signal Process. Lett., vol. 15, no. 3, pp. 317-320, Mar. 2008.
    • (2008) IEEE Signal Process. Lett. , vol.15 , Issue.3 , pp. 317-320
    • Nasrabadi, N.M.1
  • 7
  • 9
    • 77954757586 scopus 로고    scopus 로고
    • Semisupervised one-class support vector machines for classification of remote sensing data
    • Aug.
    • J. Muñoz-Marí, F. Bovolo, L. Gomez-Chova, L. Bruzzone, and G. Camps-Valls, "Semisupervised one-class support vector machines for classification of remote sensing data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 8, pp. 3188-3197, Aug. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.8 , pp. 3188-3197
    • Muñoz-Marí, J.1    Bovolo, F.2    Gomez-Chova, L.3    Bruzzone, L.4    Camps-Valls, G.5
  • 10
    • 79959708449 scopus 로고    scopus 로고
    • Simultaneous joint sparsity model for target detection in hyperspectral imagery
    • Jul.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Simultaneous joint sparsity model for target detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 676-680, Jul. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.4 , pp. 676-680
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 11
    • 84863021199 scopus 로고    scopus 로고
    • Hyperspectral image classification via kernel sparse representation
    • Brussels, Belgium, Sep.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification via kernel sparse representation," in Proc. IEEE Int. Conf. Image Process., Brussels, Belgium, Sep. 2011, pp. 1233-1236.
    • (2011) Proc. IEEE Int. Conf. Image Process. , pp. 1233-1236
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 12
    • 79951758823 scopus 로고    scopus 로고
    • Template matching via 1 minimization and its application to hyperspectral data
    • Z. Guo and S. Osher, "Template matching via 1 minimization and its application to hyperspectral data," Inv. Probl. Imaging, vol. 5, no. 1, pp. 19-35, 2011.
    • (2011) Inv. Probl. Imaging , vol.5 , Issue.1 , pp. 19-35
    • Guo, Z.1    Osher, S.2
  • 13
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • Oct.
    • I. S. Reed and X. Yu, "Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution," IEEE Trans. Acoust., Speech, Signal Process., vol. 38, no. 10, pp. 1760-1770, Oct. 1990.
    • (1990) IEEE Trans. Acoust., Speech, Signal Process. , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 14
    • 36348959745 scopus 로고    scopus 로고
    • A time-efficient method for anomaly detection in hyperspectral images
    • Dec.
    • O. Duran and M. Petrou, "A time-efficient method for anomaly detection in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3894-3904, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 3894-3904
    • Duran, O.1    Petrou, M.2
  • 15
    • 84877924594 scopus 로고    scopus 로고
    • Analysis and optimizations of global and local versions of the RX algorithms for anomaly detection in hyperspectral data
    • Apr.
    • J. M. Molero, E. M. Garzon, I. Garcia, and A. Plaza, "Analysis and optimizations of global and local versions of the RX algorithms for anomaly detection in hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 801-814, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.2 , pp. 801-814
    • Molero, J.M.1    Garzon, E.M.2    Garcia, I.3    Plaza, A.4
  • 17
    • 84877923339 scopus 로고    scopus 로고
    • Multiple-window anomaly detection for hyperspectral imagery
    • Apr.
    • W. Liu and C. I. Chang, "Multiple-window anomaly detection for hyperspectral imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 644-658, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.2 , pp. 644-658
    • Liu, W.1    Chang, C.I.2
  • 18
    • 79955590723 scopus 로고    scopus 로고
    • Random-selection-based anomaly detector for hyperspectral imagery
    • May
    • B. Du and L. Zhang, "Random-selection-based anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1578-1589, May 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1578-1589
    • Du, B.1    Zhang, L.2
  • 19
    • 18844429782 scopus 로고    scopus 로고
    • On the impact of PCA dimension reduction for hyperspectral detection of difficult targets
    • Apr.
    • M. D. Farrell and R. M. Mersereau, "On the impact of PCA dimension reduction for hyperspectral detection of difficult targets," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp. 192-195, Apr. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett. , vol.2 , Issue.2 , pp. 192-195
    • Farrell, M.D.1    Mersereau, R.M.2
  • 20
    • 33746641760 scopus 로고    scopus 로고
    • Hyperspectral anomaly detection within the signal subspace
    • Jul.
    • K. I. Ranney and M. Soumekh, "Hyperspectral anomaly detection within the signal subspace," IEEE Geosci. Remote Sens. Lett., vol. 3, no. 3, pp. 312-316, Jul. 2006.
    • (2006) IEEE Geosci. Remote Sens. Lett. , vol.3 , Issue.3 , pp. 312-316
    • Ranney, K.I.1    Soumekh, M.2
  • 21
    • 78049264379 scopus 로고    scopus 로고
    • Local manifold learning based k-nearest-neighbor for hyperspectral image classification
    • Nov.
    • L. Ma, M. M. Crawford, and J. Tian, "Local manifold learning based k-nearest-neighbor for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4099-4109, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4099-4109
    • Ma, L.1    Crawford, M.M.2    Tian, J.3
  • 22
    • 84907469422 scopus 로고    scopus 로고
    • Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
    • Nov.
    • H. Kwon and N. M. Nasrabadi, "Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4099-4109, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4099-4109
    • Kwon, H.1    Nasrabadi, N.M.2
  • 23
    • 35348881574 scopus 로고    scopus 로고
    • Kernel eigenspace separation transform for subspace anomaly detection in hyperspectral imagery
    • Oct.
    • H. Goldberg, H. Kwon, and N. M. Nasrabadi, "Kernel eigenspace separation transform for subspace anomaly detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 581-585, Oct. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.4 , pp. 581-585
    • Goldberg, H.1    Kwon, H.2    Nasrabadi, N.M.3
  • 24
    • 33746885881 scopus 로고    scopus 로고
    • A support vector method for anomaly detection in hyperspectral imagery
    • Aug.
    • A. Bannerjee, P. Burlina, and C. Diehl, "A support vector method for anomaly detection in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 8, pp. 2282-2291, Aug. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.8 , pp. 2282-2291
    • Bannerjee, A.1    Burlina, P.2    Diehl, C.3
  • 25
    • 79952039869 scopus 로고    scopus 로고
    • An SVDD-based algorithm for target detection in hyperspectral imagery
    • Mar.
    • W. Sakla, A. Chan, J. Ji, and A. Sakla, "An SVDD-based algorithm for target detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 2, pp. 384-388, Mar. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.2 , pp. 384-388
    • Sakla, W.1    Chan, A.2    Ji, J.3    Sakla, A.4
  • 26
    • 84863011302 scopus 로고    scopus 로고
    • Sparse representation or collaborative representation: Which helps face recognition?
    • Barcelona, Spain, Nov.
    • L. Zhang, M. Yang, and X. Feng, "Sparse representation or collaborative representation: Which helps face recognition?" in Proc. IEEE Int. Conf. Comput. Vis., Barcelona, Spain, Nov. 2011, pp. 471-478.
    • (2011) Proc. IEEE Int. Conf. Comput. Vis. , pp. 471-478
    • Zhang, L.1    Yang, M.2    Feng, X.3
  • 28
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • May
    • E. J. Candès, X. Li, Y. Ma, and J. Wright, "Robust principal component analysis?" J. ACM, vol. 58, no. 3, p. 11, May 2011.
    • (2011) J. ACM , vol.58 , Issue.3 , pp. 11
    • Candès, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 30
    • 84864138018 scopus 로고    scopus 로고
    • Inductive robust principal component analysis
    • Aug.
    • B. Bao, G. Liu, C. Xu, and S. Yan, "Inductive robust principal component analysis," IEEE Trans. Image Process., vol. 21, no. 8, pp. 3794-3800, Aug. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.8 , pp. 3794-3800
    • Bao, B.1    Liu, G.2    Xu, C.3    Yan, S.4
  • 31
    • 84894249820 scopus 로고    scopus 로고
    • Unsupervised nearest regularized subspace for anomaly detection in hyperspectral imagery
    • Melbourne, Vic., Australia, Jul.
    • W. Li and Q. Du, "Unsupervised nearest regularized subspace for anomaly detection in hyperspectral imagery," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Melbourne, Vic., Australia, Jul. 2013, pp. 1055-1058.
    • (2013) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 1055-1058
    • Li, W.1    Du, Q.2
  • 32
    • 84890436374 scopus 로고    scopus 로고
    • Nearest regularized subspace for hyperspectral classification
    • Jan.
    • W. Li, E. W. Tramel, S. Prasad, and J. E. Fowler, "Nearest regularized subspace for hyperspectral classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 477-489, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 477-489
    • Li, W.1    Tramel, E.W.2    Prasad, S.3    Fowler, J.E.4
  • 34
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
    • Apr.
    • J. M. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.M.1
  • 35
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Dec.
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 36
    • 84896397647 scopus 로고    scopus 로고
    • Decision fusion in kernel-induced spaces for hyperspectral image classification
    • Jun.
    • W. Li, S. Prasad, and J. E. Fowler, "Decision fusion in kernel-induced spaces for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3399-3411, Jun. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.6 , pp. 3399-3411
    • Li, W.1    Prasad, S.2    Fowler, J.E.3
  • 37
    • 66749175769 scopus 로고    scopus 로고
    • Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas
    • Mar.
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas," EURASIP J. Adv. Signal Process., vol. 2009, no. 1, pp. 783 194-1-783 194-14, Mar. 2009.
    • (2009) EURASIP J. Adv. Signal Process. , vol.2009 , Issue.1 , pp. 7831941-78319414
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 38
    • 67651152570 scopus 로고    scopus 로고
    • Information fusion in kernel-induced spaces for robust subpixel hyperspectral ATR
    • Jul.
    • S. Prasad and L. M. Bruce, "Information fusion in kernel-induced spaces for robust subpixel hyperspectral ATR," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 3, pp. 572-576, Jul. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.3 , pp. 572-576
    • Prasad, S.1    Bruce, L.M.2
  • 39
    • 80052307660 scopus 로고    scopus 로고
    • Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification
    • Sep.
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 894-898, Sep. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.5 , pp. 894-898
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 40
    • 0036613261 scopus 로고    scopus 로고
    • Anomaly detection and classification for hyperspectral imagery
    • Jun.
    • C. I. Chang and S. S. Chiang, "Anomaly detection and classification for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 6, pp. 1314-1325, Jun. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.6 , pp. 1314-1325
    • Chang, C.I.1    Chiang, S.S.2
  • 41
    • 55649112896 scopus 로고    scopus 로고
    • Anomaly-based JPEG2000 compression of hyperspectral imagery
    • Oct.
    • Q. Du,W. Zhu, and J. E. Fowler, "Anomaly-based JPEG2000 compression of hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 696-700, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 696-700
    • Du, Q.1    Zhu, W.2    Fowler, J.E.3
  • 42
    • 60849106189 scopus 로고    scopus 로고
    • Receiver operating characteristic curve confidence intervals and regions
    • Apr.
    • J. Kerekes, "Receiver operating characteristic curve confidence intervals and regions," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 251-255, Apr. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.2 , pp. 251-255
    • Kerekes, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.