메뉴 건너뛰기




Volumn 120, Issue , 2013, Pages 72-82

Unsupervised transfer learning for target detection from hyperspectral images

Author keywords

Hyperspectral images; Segmentation; Target detection; Transfer learning

Indexed keywords

DATA DISTRIBUTION; DISTRIBUTION FEATURES; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGE ANALYSIS; SEGMENTATION METHODS; TARGET AND BACKGROUND; TRANSFER LEARNING; UNSUPERVISED TRANSFER LEARNING;

EID: 84882843009     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.08.056     Document Type: Article
Times cited : (83)

References (38)
  • 2
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • Manolakis D., Shaw G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 2002, 19(1):29-43.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 3
    • 77952585265 scopus 로고    scopus 로고
    • Hybrid Detectors Based on Selective Endmembers
    • Zhang L., Du B., Zhong Y. Hybrid Detectors Based on Selective Endmembers. IEEE Trans. Geosci. Remote Sensing 2010, 48(6):2633-2646.
    • (2010) IEEE Trans. Geosci. Remote Sensing , vol.48 , Issue.6 , pp. 2633-2646
    • Zhang, L.1    Du, B.2    Zhong, Y.3
  • 5
    • 0035392132 scopus 로고    scopus 로고
    • Hyperspectral subpixel target detection using the linear mixing model
    • Manolakis D., Siracusa C., Shaw G. Hyperspectral subpixel target detection using the linear mixing model. IEEE Trans. Geosci. Remote Sensing 2001, 39(7):1392-1409.
    • (2001) IEEE Trans. Geosci. Remote Sensing , vol.39 , Issue.7 , pp. 1392-1409
    • Manolakis, D.1    Siracusa, C.2    Shaw, G.3
  • 6
    • 0033719885 scopus 로고    scopus 로고
    • Constrained subpixel target detection for remotely sensed imagery
    • Chang C.-I., Heinz D.C. Constrained subpixel target detection for remotely sensed imagery. IEEE Trans. Geosci. Remote Sensing 2000, 38(3):1144-1159.
    • (2000) IEEE Trans. Geosci. Remote Sensing , vol.38 , Issue.3 , pp. 1144-1159
    • Chang, C.-I.1    Heinz, D.C.2
  • 7
    • 15844423011 scopus 로고    scopus 로고
    • Anomaly detection based on the statistics of hyperspectral imagery, in: Proceedings of the SPIE Conference on Imagery Spectroscopy X, 5546
    • S. Catterall, Anomaly detection based on the statistics of hyperspectral imagery, in: Proceedings of the SPIE Conference on Imagery Spectroscopy X, 5546, 2004, pp. 171-178.
    • (2004) , pp. 171-178
    • Catterall, S.1
  • 8
    • 79955590723 scopus 로고    scopus 로고
    • Random selection based anomaly detector for hyperspectral imagery
    • Du B., Zhang L. Random selection based anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sensing 2010, 49(5):1578-1589.
    • (2010) IEEE Trans. Geosci. Remote Sensing , vol.49 , Issue.5 , pp. 1578-1589
    • Du, B.1    Zhang, L.2
  • 10
    • 13144306114 scopus 로고    scopus 로고
    • Approach for detecting man-made objects and changes in imagery
    • Carlotto M.J., Cluster-based A Approach for detecting man-made objects and changes in imagery. IEEE Trans. Geosci. Remote Sensing 2005, 43(2):374-387.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.2 , pp. 374-387
    • Carlotto, M.J.1    Cluster-based, A.2
  • 11
    • 84882881493 scopus 로고    scopus 로고
    • Sparse transfer learning for interactive video search reranking, ACM Trans. Multimedia Comput. Commun. Appl
    • X. Tian, D. Tao, Y. Rui, Sparse transfer learning for interactive video search reranking, ACM Trans. Multimedia Comput. Commun. Appl., (2011).
    • (2011)
    • Tian, X.1    Tao, D.2    Rui, Y.3
  • 12
    • 77952894864 scopus 로고    scopus 로고
    • Bregman divergence-based regularization for transfer subspace learning
    • Si S., Tao D., Geng B. Bregman divergence-based regularization for transfer subspace learning. IEEE Trans. Knowl. Data Eng. 2010, 22:929-942.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , pp. 929-942
    • Si, S.1    Tao, D.2    Geng, B.3
  • 13
    • 77149128951 scopus 로고    scopus 로고
    • A comparison of multivariate outlier detection methods for finding hyperspectral anomalies
    • Smetek T.E., Bauer K.W. A comparison of multivariate outlier detection methods for finding hyperspectral anomalies. Mil. Oper. Res. 2008, 13(4):19-44.
    • (2008) Mil. Oper. Res. , vol.13 , Issue.4 , pp. 19-44
    • Smetek, T.E.1    Bauer, K.W.2
  • 14
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • Reed I.S., Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 1990, 38(10):1760-1770.
    • (1990) IEEE Trans. Acoust. Speech Signal Process. , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 15
    • 0034282347 scopus 로고    scopus 로고
    • BACON: Blocked adaptive computationally efficient outlier nominators
    • Billor N., Hadi A.S., Velleman P.F. BACON: Blocked adaptive computationally efficient outlier nominators. Comput. Stat. Data Anal. 2000, 34:279-298.
    • (2000) Comput. Stat. Data Anal. , vol.34 , pp. 279-298
    • Billor, N.1    Hadi, A.S.2    Velleman, P.F.3
  • 16
    • 84858159187 scopus 로고    scopus 로고
    • A hierarchical k-means clustering based fingerprint quality classification
    • Munir M.U., Javed M.Y., Khan S.A A hierarchical k-means clustering based fingerprint quality classification. Neurocomputing 2012, 85(15):62-67.
    • (2012) Neurocomputing , vol.85 , Issue.15 , pp. 62-67
    • Munir, M.U.1    Javed, M.Y.2    Khan, S.A.3
  • 18
    • 58149202361 scopus 로고    scopus 로고
    • Semi-supervised graph clustering: a kernel approach
    • Kulis B., Basu S., Dhillon I., Mooney R. Semi-supervised graph clustering: a kernel approach. Mach. Learn. 2009, 74:1-22.
    • (2009) Mach. Learn. , vol.74 , pp. 1-22
    • Kulis, B.1    Basu, S.2    Dhillon, I.3    Mooney, R.4
  • 19
    • 84910339393 scopus 로고
    • An evaluation of model-dependent and probability-sampling inferences in sample surveys
    • Hansen M.H. An evaluation of model-dependent and probability-sampling inferences in sample surveys. J. Am. Stat. Assoc. 1983, 23:776-793.
    • (1983) J. Am. Stat. Assoc. , vol.23 , pp. 776-793
    • Hansen, M.H.1
  • 21
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290(22):2323-2326.
    • (2000) Science , vol.290 , Issue.22 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 22
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290(22):2319-2323.
    • (2000) Science , vol.290 , Issue.22 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 23
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15(6):1373-1396.
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 24
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimension reduction via local tangent space alignment
    • Zhang Z., Zha H. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J. Sci. Comput. 2004, 26(1):313-338.
    • (2004) SIAM J. Sci. Comput. , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 27
    • 12244250351 scopus 로고    scopus 로고
    • Regularized multi-task learning, in: Proceedings of the International Conference on Knowledge Discovery and Data Mining Seattle, Washington
    • T. Evgeniou, M. Pontil, Regularized multi-task learning, in: Proceedings of the International Conference on Knowledge Discovery and Data Mining Seattle, Washington, 2004, pp. 109-117.
    • (2004) , pp. 109-117
    • Evgeniou, T.1    Pontil, M.2
  • 28
    • 0019533482 scopus 로고
    • Principal component analysis in linear systems: controllability, observability, and model reduction
    • Moore B.C. Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 1981, 26(1):17-32.
    • (1981) IEEE Trans. Autom. Control , vol.26 , Issue.1 , pp. 17-32
    • Moore, B.C.1
  • 32
    • 79960810210 scopus 로고    scopus 로고
    • Manifold elastic net: a unified framework for sparse dimension reduction
    • Zhou T., Tao D., Wu X. Manifold elastic net: a unified framework for sparse dimension reduction. Data Mining Knowledge Disc. 2010, 22(3):340-371.
    • (2010) Data Mining Knowledge Disc. , vol.22 , Issue.3 , pp. 340-371
    • Zhou, T.1    Tao, D.2    Wu, X.3
  • 34
    • 84860228004 scopus 로고    scopus 로고
    • Incremental threshold learning for classifier selection
    • Pang Y., Deng J., Yuan Y. Incremental threshold learning for classifier selection. Neurocomputing 2012, 89(15):89-95.
    • (2012) Neurocomputing , vol.89 , Issue.15 , pp. 89-95
    • Pang, Y.1    Deng, J.2    Yuan, Y.3
  • 36
    • 80955131183 scopus 로고    scopus 로고
    • Learning optimal spatial filters by discriminant analysis for brain-computer-interface
    • Pang Y., Yuan Y., Wang K. Learning optimal spatial filters by discriminant analysis for brain-computer-interface. Neurocomputing 2011, 77(1):20-27.
    • (2011) Neurocomputing , vol.77 , Issue.1 , pp. 20-27
    • Pang, Y.1    Yuan, Y.2    Wang, K.3
  • 37
    • 0037209421 scopus 로고    scopus 로고
    • Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery
    • Du Q., Ren H. Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery. Pattern Recognit. 2003, 36:1-12.
    • (2003) Pattern Recognit. , vol.36 , pp. 1-12
    • Du, Q.1    Ren, H.2
  • 38
    • 75749094310 scopus 로고    scopus 로고
    • Outlier-resisting graph embedding
    • Pang Y., Yuan Y. Outlier-resisting graph embedding. Neurocomputing 2010, 73:968-974.
    • (2010) Neurocomputing , vol.73 , pp. 968-974
    • Pang, Y.1    Yuan, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.