메뉴 건너뛰기




Volumn 62, Issue 11, 2015, Pages 2553-2567

Real-time neuroimaging and cognitive monitoring using wearable dry EEG

Author keywords

adaptive systems; brain computer interfaces; connectivity analysis; dry contact electrode; EEG; neuroimaging; Wearable sensors

Indexed keywords

ADAPTIVE SYSTEMS; BENCHMARKING; BRAIN; BRAIN COMPUTER INTERFACE; CLASSIFICATION (OF INFORMATION); COGNITIVE SYSTEMS; COMPUTER PROGRAMMING; DATA VISUALIZATION; ELECTRODES; ELECTROENCEPHALOGRAPHY; HUMAN COMPUTER INTERACTION; INTERFACES (COMPUTER); NEUROIMAGING; OPEN SOURCE SOFTWARE; SOFTWARE ENGINEERING; WEARABLE SENSORS; WEARABLE TECHNOLOGY;

EID: 84946811116     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2015.2481482     Document Type: Article
Times cited : (549)

References (71)
  • 1
    • 84899703320 scopus 로고    scopus 로고
    • Integrated circuits and electrode interfaces for noninvasive physiological monitoring
    • May
    • S. Ha., et al. Integrated circuits and electrode interfaces for noninvasive physiological monitoring. IEEE Trans. Biomed. Eng., vol. 61, no. 5, pp. 1522-1537, May. 2014.
    • (2014) IEEE Trans. Biomed. Eng , vol.61 , Issue.5 , pp. 1522-1537
    • Ha, S.1
  • 2
    • 84862777322 scopus 로고    scopus 로고
    • Biosensor technologies for augmented brain-computer interfaces in the next decades
    • May
    • L. D. Liao., et al. Biosensor technologies for augmented brain-computer interfaces in the next decades. Proc. IEEE., vol. 100, pp. 1553-1566, May. 2012.
    • (2012) Proc. IEEE , vol.100 , pp. 1553-1566
    • Liao, L.D.1
  • 3
    • 59649083649 scopus 로고    scopus 로고
    • Fundamentals of physiological computing
    • Jan
    • S.H. Fairclough, Fundamentals of physiological computing. Interacting Comput., vol. 21, nos. 1/2, pp. 133-145, Jan. 2009.
    • (2009) Interacting Comput , vol.21 , Issue.1-2 , pp. 133-145
    • Fairclough, S.H.1
  • 4
    • 84861186499 scopus 로고    scopus 로고
    • Brain-computer interaction technologies in the coming decades
    • May
    • B. Lance, Brain-computer interaction technologies in the coming decades. Proc. IEEE., vol. 100, pp. 1585-1599, May. 2012.
    • (2012) Proc. IEEE , vol.100 , pp. 1585-1599
    • Lance, B.1
  • 6
    • 84867698237 scopus 로고    scopus 로고
    • How about taking a low-cost, small, and wireless EEG for awalk?
    • Nov
    • S. Debener., et al. How about taking a low-cost, small, and wireless EEG for awalk? Psychophysiology., vol. 49, no. 11, pp. 1617-1621, Nov. 2012.
    • (2012) Psychophysiology , vol.49 , Issue.11 , pp. 1617-1621
    • Debener, S.1
  • 7
    • 84895529727 scopus 로고    scopus 로고
    • The smartphone brain scanner: Aportable real-Time neuroimaging system
    • A. Stopczynski., et al. The smartphone brain scanner: Aportable real-Time neuroimaging system. PloS One., vol. 9, no. 2, p. e86733, 2014.
    • (2014) PloS One , vol.9 , Issue.2 , pp. e86733
    • Stopczynski, A.1
  • 8
    • 0035318822 scopus 로고    scopus 로고
    • The brainweb: Phase synchronization and large-scale integration
    • Apr
    • F. Varela., et al. The brainweb: Phase synchronization and large-scale integration. Nature Rev. Neurosci., vol. 2, no. 4, pp. 229-239, Apr. 2001.
    • (2001) Nature Rev. Neurosci , vol.2 , Issue.4 , pp. 229-239
    • Varela, F.1
  • 9
    • 0032484086 scopus 로고    scopus 로고
    • Consciousness and complexity
    • Dec. 4
    • G. Tononi and G.M. Edelman, Consciousness and complexity. Science., vol. 282, no. 5395, pp. 1846-1851, Dec. 4, 1998.
    • (1998) Science , vol.282 , Issue.5395 , pp. 1846-1851
    • Tononi, G.1    Edelman, G.M.2
  • 10
    • 0036308968 scopus 로고    scopus 로고
    • Beyond phrenology: What can neuroimaging tell us about distributed circuitry?
    • K. Friston, Beyond phrenology: What can neuroimaging tell us about distributed circuitry? Annu. Rev. Neurosci., vol. 25, pp. 221-250, 2002.
    • (2002) Annu. Rev. Neurosci , vol.25 , pp. 221-250
    • Friston, K.1
  • 11
    • 0026545604 scopus 로고
    • Cerebral cortical mechanisms of reaching movements
    • Mar. 20
    • J. F. Kalaska., and D. J. Crammond, Cerebral cortical mechanisms of reaching movements. Science., vol. 255, no. 5051, pp. 1517-1523, Mar. 20, 1992.
    • (1992) Science , vol.255 , Issue.5051 , pp. 1517-1523
    • Kalaska, J.F.1    Crammond, J.D.2
  • 12
    • 84905836767 scopus 로고    scopus 로고
    • EEG source connectivity analysis: From dense array recordings to brain networks
    • Aug. 12
    • M. Hassan., et al. EEG source connectivity analysis: From dense array recordings to brain networks. PloS One., vol. 9, no. 8, p. e105041, Aug. 12, 2014.
    • (2014) PloS One , vol.9 , Issue.8 , pp. e105041
    • Hassan, M.1
  • 13
    • 66449122748 scopus 로고    scopus 로고
    • Source connectivity analysis with MEG and EEG
    • Jun
    • J. M. Schoffelen., and J. Gross, Source connectivity analysis with MEG and EEG. Hum. BrainMapping., vol. 30, no. 6, pp. 1857-1865, Jun. 2009.
    • (2009) Hum. BrainMapping , vol.30 , Issue.6 , pp. 1857-1865
    • Schoffelen, J.M.1    Gross, J.2
  • 14
    • 84867314481 scopus 로고    scopus 로고
    • A critical assessment of connectivity measures for EEG data: A simulation study
    • Jan. 1
    • S. Haufe., et al. A critical assessment of connectivity measures for EEG data: A simulation study. NeuroImage., vol. 64, pp. 120-133, Jan. 1, 2013.
    • (2013) NeuroImage , vol.64 , pp. 120-133
    • Haufe, S.1
  • 15
    • 84862777072 scopus 로고    scopus 로고
    • Evolving signal processing for brain-computer interfaces
    • May
    • S. Makeig., et al. Evolving signal processing for brain-computer interfaces. Proc. IEEE., vol. 100, pp. 1567-1584, May. 2012.
    • (2012) Proc. IEEE , vol.100 , pp. 1567-1584
    • Makeig, S.1
  • 16
    • 79959562090 scopus 로고    scopus 로고
    • Electrophysiological imaging of brain activity and connectivity-challenges and opportunities
    • Jul
    • B. He., et al. Electrophysiological imaging of brain activity and connectivity-challenges and opportunities. IEEE Trans. Biomed. Eng., vol. 58, no. 7, pp. 1918-1931, Jul. 2011.
    • (2011) IEEE Trans. Biomed. Eng , vol.58 , Issue.7 , pp. 1918-1931
    • He, B.1
  • 17
    • 10044258730 scopus 로고    scopus 로고
    • Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function
    • Jan. 1
    • F. Babiloni., et al. Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function. NeuroImage., vol. 24, no. 1, pp. 118-131, Jan. 1, 2005.
    • (2005) NeuroImage , vol.24 , Issue.1 , pp. 118-131
    • Babiloni, F.1
  • 18
    • 33846907845 scopus 로고    scopus 로고
    • Comparison of different cortical connectivity estimators for high-resolution EEG recordings
    • Feb
    • L. Astolfi., et al. Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Hum. Brain Mapping., vol. 28, no. 2, pp. 143-157, Feb. 2007.
    • (2007) Hum. Brain Mapping , vol.28 , Issue.2 , pp. 143-157
    • Astolfi, L.1
  • 19
    • 84883160255 scopus 로고    scopus 로고
    • Single-Trial connectivity estimation for classification of motor imagery data
    • art. no. 046006 Aug
    • M. Billinger., et al. Single-Trial connectivity estimation for classification of motor imagery data. J. Neural Eng., vol. 10, no. 4, art. no. 046006, Aug. 2013.
    • (2013) J. Neural Eng , vol.10 , Issue.4
    • Billinger, M.1
  • 20
    • 84886496003 scopus 로고    scopus 로고
    • Real-Time modeling and 3D visualization of source dynamics and connectivity using wearable EEG
    • T. Mullen., et al. Real-Time modeling and 3D visualization of source dynamics and connectivity using wearable EEG. in Proc. IEEE Eng. Med. Biol. Soc. Conf., 2013, pp. 2184-2187.
    • (2013) Proc.IEEE Eng. Med. Biol. Soc. Conf , pp. 2184-2187
    • Mullen, T.1
  • 21
    • 84885436573 scopus 로고    scopus 로고
    • BCILAB: A platform for brain-computer interface development
    • Oct
    • C. A. Kothe., and S. Makeig, BCILAB: A platform for brain-computer interface development. J. Neural Eng., vol. 10, no. 5, p. 056014, Oct. 2013.
    • (2013) J. Neural Eng , vol.10 , Issue.5 , pp. 056014
    • Kothe, C.A.1    Makeig, S.2
  • 23
    • 78751703809 scopus 로고    scopus 로고
    • Econnectome: AMATLABtoolbox for mapping and imaging of brain functional connectivity
    • Feb. 15
    • B. He., et al. Econnectome: AMATLABtoolbox for mapping and imaging of brain functional connectivity. J. Neurosci. Methods., vol. 195, no. 2, pp. 261-269, Feb. 15, 2011.
    • (2011) J. Neurosci. Methods , vol.195 , Issue.2 , pp. 261-269
    • He, B.1
  • 24
    • 84896924088 scopus 로고    scopus 로고
    • SCoT: A python toolbox for EEG source connectivity
    • Mar. 11
    • M. Billinger., et al. SCoT: A python toolbox for EEG source connectivity. Front. Neuroinformat., vol. 8, Mar. 11, 2014, doi: 10.3389/fninf. 2014.00022.
    • (2014) Front. Neuroinformat , vol.8
    • Billinger, M.1
  • 25
    • 85162310599 scopus 로고    scopus 로고
    • ICA with reconstruction cost for efficient overcomplete feature learning
    • Q. V. Le., et al. ICA with reconstruction cost for efficient overcomplete feature learning. in Proc. Adv. Neural Inf. Process. Syst. Conf., 2011, pp. 1017-1025.
    • (2011) Proc. Adv. Neural Inf. Process. Syst. Conf , pp. 1017-1025
    • Le, Q.V.1
  • 26
    • 84866599679 scopus 로고    scopus 로고
    • Recursive independent component analysis for online blind source separation
    • M. T. Akhtar., et al. Recursive independent component analysis for online blind source separation. IEEE Int. Symp. Circuits Syst., 2012., vol. 6, pp. 2813-2816.
    • (2012) IEEE Int. Symp. Circuits Syst , vol.6 , pp. 2813-2816
    • Akhtar, M.T.1
  • 27
    • 84928385016 scopus 로고    scopus 로고
    • Online recursive independent component analysis for real-Time source separation of high-density EEG
    • S.-H. Hsu., et al. Online recursive independent component analysis for real-Time source separation of high-density EEG. in Proc. IEEE Eng. Med. Biol. Soc. Conf., 2014, pp. 3845-3848.
    • (2014) Proc.IEEE Eng. Med. Biol. Soc. Conf , pp. 3845-3848
    • Hsu, S.-H.1
  • 28
    • 0001352378 scopus 로고
    • Breakdown points of affine equivariant estimators of multivariate location and covariance matrices
    • Mar
    • H. P. Lopuhaa., and P. J. Rousseeuw, Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. Ann. Statist., vol. 19, no. 1, pp. 229-248, Mar. 1991.
    • (1991) Ann. Statist , vol.19 , Issue.1 , pp. 229-248
    • Lopuhaa, H.P.1    Rousseeuw, P.J.2
  • 29
    • 84933532771 scopus 로고    scopus 로고
    • The PREP pipeline: Standardized preprocessing for large-scale EEG analysis
    • N. Bigdely-Shamlo., et al. The PREP pipeline: Standardized preprocessing for large-scale EEG analysis. Front. Neuroinformat., vol. 9, p. 16, 2015.
    • (2015) Front. Neuroinformat , vol.9 , pp. 16
    • Bigdely-Shamlo, N.1
  • 30
    • 77956464128 scopus 로고    scopus 로고
    • OpenMEEG: Opensource software for quasistatic bioelectromagnetics
    • A. Gramfort., et al. OpenMEEG: Opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online., vol. 9, p. 45, 2010.
    • (2010) Biomed. Eng. Online , vol.9 , pp. 45
    • Gramfort, A.1
  • 31
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
    • Jan
    • N. Tzourio-Mazoyer., et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage., vol. 15, no. 1, pp. 273-289, Jan. 2002.
    • (2002) NeuroImage , vol.15 , Issue.1 , pp. 273-289
    • Tzourio-Mazoyer, N.1
  • 32
    • 84896989625 scopus 로고    scopus 로고
    • MoBILAB: An open source toolbox for analysis and visualization of mobile brain/body imaging data
    • Mar. 5
    • A. Ojeda., et al. MoBILAB: An open source toolbox for analysis and visualization of mobile brain/body imaging data. Front. Hum. Neurosci., vol. 8, no. 121, Mar. 5, 2014, doi: 10.3389/fnhum.2014.00121.
    • (2014) Front. Hum. Neurosci , vol.8 , Issue.121
    • Ojeda, A.1
  • 34
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • G. H. Golub., et al. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics., vol. 21, no. 2, pp. 215-223, 1979.
    • (1979) Technometrics , vol.21 , Issue.2 , pp. 215-223
    • Golub, G.H.1
  • 35
    • 84984552597 scopus 로고    scopus 로고
    • Localization of brain electrical activity via linearly constrained minimum variance spatial filtering
    • Sep
    • B. D. VanVeen., et al. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng., vol. 44, no. 9, pp. 867-880, Sep. 1997.
    • (1997) IEEE Trans. Biomed. Eng , vol.44 , Issue.9 , pp. 867-880
    • VanVeen, B.D.1
  • 36
    • 79959201819 scopus 로고    scopus 로고
    • Eeglab, sift, nft, bcilab, and erica: New tools for advanced EEG processing
    • A. Delorme., et al. EEGLAB, SIFT, NFT, BCILAB, and ERICA: New tools for advanced EEG processing. Comput. Intel. Neurosci., vol. 2011, pp. 130-714, 2011.
    • (2011) Comput. Intel. Neurosci , vol.2011 , pp. 130-714
    • Delorme, A.1
  • 37
    • 0037473234 scopus 로고    scopus 로고
    • The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies
    • W. Hesse., et al. The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J. Neurosci. Methods., vol. 124, pp. 27-44, 2003.
    • (2003) J. Neurosci. Methods , vol.124 , pp. 27-44
    • Hesse, W.1
  • 38
    • 44149095492 scopus 로고    scopus 로고
    • Analyzing information flow in brain networks with nonparametric Granger causality
    • M. Dhamala., et al. Analyzing information flow in brain networks with nonparametric Granger causality. NeuroImage., vol. 41, pp. 354-362, 2008.
    • (2008) NeuroImage , vol.41 , pp. 354-362
    • Dhamala, M.1
  • 40
    • 84875677250 scopus 로고    scopus 로고
    • Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation
    • Apr
    • Z. L. Zhang., and B. D. Rao, Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Trans. Signal Process., vol. 61, no. 8, pp. 2009-2015, Apr. 2013.
    • (2013) IEEE Trans. Signal Process , vol.61 , Issue.8 , pp. 2009-2015
    • Zhang, Z.L.1    Rao, B.D.2
  • 41
    • 25444464693 scopus 로고    scopus 로고
    • Estimating brain functional connectivity with sparse multivariate autoregression
    • May 29
    • P. A. Valdes-Sosa., et al. Estimating brain functional connectivity with sparse multivariate autoregression. Philos. Trans. Roy. Soc. Lond., B, Biol. Sci., vol. 360, no. 1457, pp. 969-981, May 29, 2005.
    • (2005) Philos. Trans. Roy. Soc. Lond., B, Biol. Sci , vol.360 , Issue.1457 , pp. 969-981
    • Valdes-Sosa, P.A.1
  • 42
    • 77954648556 scopus 로고    scopus 로고
    • Sparse Causal Discovery in Multivariate Time Series
    • I. Guyon, D. Janzing, ., and B. Schölkopf, Eds., JMLR W&CP.
    • S. Hauf K. R.Müller, G. Nolte, ., and N. Krämer. Sparse Causal Discovery in Multivariate Time Series in Causality: Objectives and Assessment, I. Guyon, D. Janzing, ., and B. Schölkopf, Eds., JMLR W&CP. vol. 6, pp. 97-106.
    • Causality: Objectives and Assessment , vol.6 , pp. 97-106
    • Hauf, K.R.1    Müller, S.2    Nolte, G.3    Krämer, N.4
  • 43
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan., and Y. Lin, Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. B. Stat. Method., vol. 68, pp. 49-67, 2006.
    • (2006) J. Roy. Stat. Soc. B. Stat. Method , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 44
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: Graph theoretical analysis of structural and functional systems
    • Mar
    • E. Bullmore., and O. Sporns, Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci., vol. 10, no. 3, pp. 186-198, Mar. 2009.
    • (2009) Nature Rev. Neurosci , vol.10 , Issue.3 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 45
    • 84892566412 scopus 로고    scopus 로고
    • The non-random brain: Efficiency, economy, and complex dynamics
    • O. Sporns, The non-random brain: Efficiency, economy, and complex dynamics. Front. Comput. Neurosci., vol. 5, p. 5, 2011.
    • (2011) Front. Comput. Neurosci , vol.5 , pp. 5
    • Sporns, O.1
  • 46
    • 33845909323 scopus 로고    scopus 로고
    • Small worlds inside big brains
    • Dec. 19
    • O. Sporns., and C. J. Honey, Small worlds inside big brains. Proc. Nat. Acad. Sci. USA., vol. 103, no. 51, pp. 19219-19220, Dec. 19, 2006.
    • (2006) Proc. Nat. Acad. Sci. USA , vol.103 , Issue.51 , pp. 19219-19220
    • Sporns, O.1    Honey, C.J.2
  • 47
    • 70349600872 scopus 로고    scopus 로고
    • Dual-Augmented Lagrangian method for efficient sparse reconstruction
    • Dec
    • R. Tomioka., and M. Sugiyama, Dual-Augmented Lagrangian method for efficient sparse reconstruction. IEEE Signal Process. Lett., vol. 16, no. 12, pp. 1067-1070, Dec. 2009.
    • (2009) IEEE Signal Process. Lett , vol.16 , Issue.12 , pp. 1067-1070
    • Tomioka, R.1    Sugiyama, M.2
  • 48
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd., et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Mach. Learn., vol. 3, no. 1, pp. 1-122, 2011.
    • (2011) Mach. Learn , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1
  • 49
    • 77949475448 scopus 로고    scopus 로고
    • Measuring autonomy and emergence via granger causality
    • A. K. Seth, Measuring autonomy and emergence via granger causality. Artif. Life., vol. 16, no. 2, pp. 179-196, 2010.
    • (2010) Artif. Life , vol.16 , Issue.2 , pp. 179-196
    • Seth, A.K.1
  • 50
    • 84906861729 scopus 로고    scopus 로고
    • Graph analysis of functional brain networks: Practical issues in translational neuroscience
    • Sept. 1
    • F. D. Fallani., et al. Graph analysis of functional brain networks: Practical issues in translational neuroscience. Philos. Trans. R. Soc. Lond., B, Biol. Sci., vol. 369, no. 1653, Sept. 1 2014, DOI: 10.1098/rstb.2013.0521.
    • (2014) Philos. Trans. R. Soc. Lond., B, Biol. Sci , vol.369 , Issue.1653
    • Fallani, F.D.1
  • 51
    • 61649124007 scopus 로고    scopus 로고
    • Assessing the strength of directed influences among neural signals using renormalized partial directed coherence
    • B. Schelter., et al. Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J. Neurosci. Methods., vol. 179, pp. 121-130, 2009.
    • (2009) J. Neurosci. Methods , vol.179 , pp. 121-130
    • Schelter, B.1
  • 52
    • 0035377249 scopus 로고    scopus 로고
    • Partial directed coherence: A new concept in neural structure determination
    • L. A. Baccalá., and K. Sameshima, Partial directed coherence: A new concept in neural structure determination. Biol. Cybern., vol. 84, pp. 463-474, 2001.
    • (2001) Biol. Cybern , vol.84 , pp. 463-474
    • Baccalá, L.A.1    Sameshima, K.2
  • 53
    • 39749132355 scopus 로고    scopus 로고
    • Error-related EEG potentials generated during simulated brain-computer interaction
    • Mar
    • P. W. Ferrez., and R. M. J. Del, Error-related EEG potentials generated during simulated brain-computer interaction. IEEE Trans. Biomed. Eng., vol. 55, no. 3, pp. 923-929, Mar. 2008.
    • (2008) IEEE Trans. Biomed. Eng , vol.55 , Issue.3 , pp. 923-929
    • Ferrez, P.W.1    Del, R.M.J.2
  • 54
    • 70350401057 scopus 로고    scopus 로고
    • Performancemonitoring is altered in adult ADHD: A familial event-related potential investigation
    • Dec
    • G. McLoughlin., et al. Performancemonitoring is altered in adult ADHD: A familial event-related potential investigation. Neuropsychologia., vol. 47, no. 14, pp. 3134-3142, Dec. 2009.
    • (2009) Neuropsychologia , vol.47 , Issue.14 , pp. 3134-3142
    • McLoughlin, G.1
  • 55
    • 3242691476 scopus 로고    scopus 로고
    • Frontal midline theta and the error-related negativity: Neurophysiological mechanisms of action regulation
    • P. Luu., et al. Frontal midline theta and the error-related negativity: Neurophysiological mechanisms of action regulation. Clin. Neurophys., vol. 115, pp. 1821-1835, 2004.
    • (2004) Clin. Neurophys , vol.115 , pp. 1821-1835
    • Luu, P.1
  • 56
    • 78650936664 scopus 로고    scopus 로고
    • Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation
    • Feb. 14
    • C. S. Yu., et al. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. NeuroImage., vol. 54, no. 4, pp. 2571-2581, Feb. 14, 2011.
    • (2011) NeuroImage , vol.54 , Issue.4 , pp. 2571-2581
    • Yu, C.S.1
  • 57
    • 84946783354 scopus 로고    scopus 로고
    • Analysis and visualization of theta-band information flow dynamics in an ERN-producing task
    • Barcelona, Spain
    • T. Mullen., et al. Analysis and visualization of theta-band information flow dynamics in an ERN-producing task. presented at the Human Brain Mapping Conf., Barcelona, Spain, 2010.
    • (2010) Presented at the Human Brain Mapping Conf
    • Mullen, T.1
  • 58
    • 53249098517 scopus 로고    scopus 로고
    • Dynamics of event-related causality in brain electrical activity
    • A. Korzeniewska., et al. Dynamics of event-related causality in brain electrical activity. Hum. Brain Mapping., vol. 29, pp. 1170-1192, 2008.
    • (2008) Hum. Brain Mapping , vol.29 , pp. 1170-1192
    • Korzeniewska, A.1
  • 59
    • 33846819967 scopus 로고    scopus 로고
    • Theta EEG dynamics of the error-related negativity
    • Mar
    • L. T. Trujillo., and J. J. B. Allen, Theta EEG dynamics of the error-related negativity. Clin. Neurophys., vol. 118, no. 3, pp. 645-668, Mar. 2007.
    • (2007) Clin. Neurophys , vol.118 , Issue.3 , pp. 645-668
    • Trujillo, L.T.1    Allen, J.J.B.2
  • 60
    • 2942537897 scopus 로고    scopus 로고
    • Parallel systems of error processing in the brain
    • Jun
    • J. Yordanova., et al. Parallel systems of error processing in the brain. NeuroImage., vol. 22, no. 2, pp. 590-602, Jun. 2004.
    • (2004) NeuroImage , vol.22 , Issue.2 , pp. 590-602
    • Yordanova, J.1
  • 61
    • 79954990666 scopus 로고    scopus 로고
    • Introduction to machine learning for brain imaging
    • May 15
    • S. Lemm., et al. Introduction to machine learning for brain imaging. NeuroImage., vol. 56, no. 2, pp. 387-399, May 15, 2011.
    • (2011) NeuroImage , vol.56 , Issue.2 , pp. 387-399
    • Lemm, S.1
  • 62
    • 70349969800 scopus 로고    scopus 로고
    • Aregularized discriminative framework for EEG analysis with application to brain-computer interface
    • Jan. 1
    • R. Tomioka., and K.R. Muller, Aregularized discriminative framework for EEG analysis with application to brain-computer interface. NeuroImage., vol. 49, no. 1, pp. 415-432, Jan. 1, 2010.
    • (2010) NeuroImage , vol.49 , Issue.1 , pp. 415-432
    • Tomioka, R.1    Muller, K.R.2
  • 63
    • 84946783355 scopus 로고    scopus 로고
    • Real-Time functional brain imaging: How GPU acceleration redefines each stage
    • T. Mullen., et al. Real-Time functional brain imaging: How GPU acceleration redefines each stage. in Proc. GPU Technol. Conf. NVIDIA Corporation, 2014.
    • (2014) Proc. GPU Technol. Conf. NVIDIA Corporation
    • Mullen, T.1
  • 64
    • 84862254094 scopus 로고    scopus 로고
    • Modeling cortical source dynamics and interactions during seizure
    • Boston, MA, USA
    • T. Mullen., et al. Modeling cortical source dynamics and interactions during seizure. in Proc. IEEE Eng. Med. Biol. Conf., Boston, MA, USA, 2011, pp. 1411-1414.
    • (2011) Proc. IEEE Eng. Med. Biol. Conf , pp. 1411-1414
    • Mullen, T.1
  • 65
    • 84904390953 scopus 로고    scopus 로고
    • Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders
    • Aug
    • F. D. Broccard., et al. Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders. Ann. Biomed. Eng., vol. 42, no. 8, pp. 1573-1593, Aug. 2014.
    • (2014) Ann. Biomed. Eng , vol.42 , Issue.8 , pp. 1573-1593
    • Broccard, F.D.1
  • 66
    • 55749109728 scopus 로고    scopus 로고
    • Estimation of time-varying connectivity patterns through the use of an adaptive directed transfer function
    • Nov
    • C. Wilke., et al. Estimation of time-varying connectivity patterns through the use of an adaptive directed transfer function. IEEE Trans. Biomed. Eng., vol. 55, no. 11, pp. 2557-2564, Nov. 2008.
    • (2008) IEEE Trans. Biomed. Eng , vol.55 , Issue.11 , pp. 2557-2564
    • Wilke, C.1
  • 67
    • 84946783356 scopus 로고    scopus 로고
    • Foundations of augmented cognition neuroergonomics and operational neuroscience
    • FAC. San Diego, CA, USA, Jul. 19-24, 2009
    • D. Schmorrow., et al. Foundations of augmented cognition neuroergonomics and operational neuroscience. presented at 5th Int. Conference, FAC. 2009, San Diego, CA, USA, Jul. 19-24, 2009.
    • (2009) Presented at 5th Int. Conference
    • Schmorrow, D.1
  • 68
    • 34247338982 scopus 로고    scopus 로고
    • EEG-based lapse detection with high temporal resolution
    • May
    • P. R. Davidson., et al. EEG-based lapse detection with high temporal resolution. IEEE Trans. Biomed. Eng., vol. 54, no. 5, pp. 832-839, May. 2007.
    • (2007) IEEE Trans. Biomed. Eng , vol.54 , Issue.5 , pp. 832-839
    • Davidson, P.R.1
  • 69
    • 45749091592 scopus 로고    scopus 로고
    • Predicting human brain activity associated with the meanings of nouns
    • May 30
    • T. M. Mitchell., et al. Predicting human brain activity associated with the meanings of nouns. Science., vol. 320, no. 5880, pp. 1191-1195, May 30, 2008.
    • (2008) Science , vol.320 , Issue.5880 , pp. 1191-1195
    • Mitchell, T.M.1
  • 70
    • 84890905553 scopus 로고    scopus 로고
    • On the interpretation of weight vectors of linear models in multivariate neuroimaging
    • Feb. 15
    • S. Haufe., et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage., vol. 87, pp. 96-110, Feb. 15, 2014.
    • (2014) NeuroImage , vol.87 , pp. 96-110
    • Haufe, S.1
  • 71
    • 66449091471 scopus 로고    scopus 로고
    • Prestimulus alpha and mu activity predicts failure to inhibit motor responses
    • Jun
    • A. Mazaheri., et al. Prestimulus alpha and mu activity predicts failure to inhibit motor responses. Hum. Brain Mapping., vol. 30, no. 6, pp. 1791-1800, Jun. 2009.
    • (2009) Hum. Brain Mapping , vol.30 , Issue.6 , pp. 1791-1800
    • Mazaheri, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.