-
3
-
-
0029016357
-
-
F. Crick and C. Koch, Cold Spring Harbor Symp. Quant. Biol. 55, 953 (1990); Nature 375, 121 (1995); S. Zeki and A. Bartels, Proc. R. Soc. London Ser. B 265, 1583 (1998).
-
(1995)
Nature
, vol.375
, pp. 121
-
-
-
4
-
-
0032558268
-
-
F. Crick and C. Koch, Cold Spring Harbor Symp. Quant. Biol. 55, 953 (1990); Nature 375, 121 (1995); S. Zeki and A. Bartels, Proc. R. Soc. London Ser. B 265, 1583 (1998).
-
(1998)
Proc. R. Soc. London Ser. B
, vol.265
, pp. 1583
-
-
Zeki, S.1
Bartels, A.2
-
6
-
-
0004294876
-
-
Basic Books, New York
-
G. M. Edelman, The Remembered Present (Basic Books, New York, 1989); _ and G. Tononi, Consciousness: How Matter Becomes Imagination (Basic Books, New York, in press); see also G. Tononi and G. M. Edelman, in Consciousness, H. Jasper et al., Eds. (Plenum, New York, 1998). pp. 245-280.
-
(1989)
The Remembered Present
-
-
Edelman, G.M.1
-
7
-
-
0003830411
-
-
Basic Books, New York, in press
-
G. M. Edelman, The Remembered Present (Basic Books, New York, 1989); _ and G. Tononi, Consciousness: How Matter Becomes Imagination (Basic Books, New York, in press); see also G. Tononi and G. M. Edelman, in Consciousness, H. Jasper et al., Eds. (Plenum, New York, 1998). pp. 245-280.
-
Consciousness: How Matter Becomes Imagination
-
-
Tononi, G.1
-
8
-
-
0031616434
-
-
H. Jasper et al., Eds. Plenum, New York
-
G. M. Edelman, The Remembered Present (Basic Books, New York, 1989); _ and G. Tononi, Consciousness: How Matter Becomes Imagination (Basic Books, New York, in press); see also G. Tononi and G. M. Edelman, in Consciousness, H. Jasper et al., Eds. (Plenum, New York, 1998). pp. 245-280.
-
(1998)
Consciousness
, pp. 245-280
-
-
Tononi, G.1
Edelman, G.M.2
-
9
-
-
3743054493
-
-
note
-
A "conscious state" is meant here as an idealization, exemplified by viewing a rapid succession of slides.
-
-
-
-
11
-
-
0028502653
-
-
H. Pashler, Psychol. Bull. 116, 220 (1994). The duration of this interval is comparable with the duration of conscious states [A. L. Blumenthal, The Process of Cognition (Prentice-Hall, Englewood Cliffs, NJ, 1977)].
-
(1994)
Psychol. Bull.
, vol.116
, pp. 220
-
-
Pashler, H.1
-
12
-
-
0028502653
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
H. Pashler, Psychol. Bull. 116, 220 (1994). The duration of this interval is comparable with the duration of conscious states [A. L. Blumenthal, The Process of Cognition (Prentice-Hall, Englewood Cliffs, NJ, 1977)].
-
(1977)
The Process of Cognition
-
-
Blumenthal, A.L.1
-
15
-
-
0015496840
-
-
H. Intraub, J. Exp. Psychol. Hum. Percept. Perform. 7, 604 (1981); I. Biederman, Science 177, 77 (1972).
-
(1972)
Science
, vol.177
, pp. 77
-
-
Biederman, I.1
-
16
-
-
0003685012
-
-
Univ. of Illinois Press, Urbana, IL
-
C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (Univ. of Illinois Press, Urbana, IL, 1963). Note that the informativeness of consciousness also helps us to understand its evolutionary value (4).
-
(1963)
The Mathematical Theory of Communication
-
-
Shannon, C.E.1
Weaver, W.2
-
17
-
-
0002521156
-
-
G. M. Edelman and V. B. Mountcastle, Eds. MIT Press, Cambridge, MA
-
V. B. Mountcastle, in The Mindful Brain, G. M. Edelman and V. B. Mountcastle, Eds. (MIT Press, Cambridge, MA, 1978), p. 7; A. Damasio, Cognition 33, 25 (1989); R. Llinas, U. Ribary, M. Joliot, X.-J. Wang, in Temporal Coding in the Brain, G. Buzsaki, R. Llinas, W. Singer, Eds. (Springer-Verlag, Berlin, 1994); J. Newman, Consciousness Cognit. 4, 172 (1995); T. W. Picton and D. T. Stuss, Curr. Biol. 4, 256 (1994).
-
(1978)
The Mindful Brain
, pp. 7
-
-
Mountcastle, V.B.1
-
18
-
-
0024763056
-
-
V. B. Mountcastle, in The Mindful Brain, G. M. Edelman and V. B. Mountcastle, Eds. (MIT Press, Cambridge, MA, 1978), p. 7; A. Damasio, Cognition 33, 25 (1989); R. Llinas, U. Ribary, M. Joliot, X.-J. Wang, in Temporal Coding in the Brain, G. Buzsaki, R. Llinas, W. Singer, Eds. (Springer-Verlag, Berlin, 1994); J. Newman, Consciousness Cognit. 4, 172 (1995); T. W. Picton and D. T. Stuss, Curr. Biol. 4, 256 (1994).
-
(1989)
Cognition
, vol.33
, pp. 25
-
-
Damasio, A.1
-
19
-
-
0004016751
-
-
G. Buzsaki, R. Llinas, W. Singer, Eds. Springer-Verlag, Berlin
-
V. B. Mountcastle, in The Mindful Brain, G. M. Edelman and V. B. Mountcastle, Eds. (MIT Press, Cambridge, MA, 1978), p. 7; A. Damasio, Cognition 33, 25 (1989); R. Llinas, U. Ribary, M. Joliot, X.-J. Wang, in Temporal Coding in the Brain, G. Buzsaki, R. Llinas, W. Singer, Eds. (Springer-Verlag, Berlin, 1994); J. Newman, Consciousness Cognit. 4, 172 (1995); T. W. Picton and D. T. Stuss, Curr. Biol. 4, 256 (1994).
-
(1994)
Temporal Coding in the Brain
-
-
Llinas, R.1
Ribary, U.2
Joliot, M.3
Wang, X.-J.4
-
20
-
-
0029313040
-
-
V. B. Mountcastle, in The Mindful Brain, G. M. Edelman and V. B. Mountcastle, Eds. (MIT Press, Cambridge, MA, 1978), p. 7; A. Damasio, Cognition 33, 25 (1989); R. Llinas, U. Ribary, M. Joliot, X.-J. Wang, in Temporal Coding in the Brain, G. Buzsaki, R. Llinas, W. Singer, Eds. (Springer-Verlag, Berlin, 1994); J. Newman, Consciousness Cognit. 4, 172 (1995); T. W. Picton and D. T. Stuss, Curr. Biol. 4, 256 (1994).
-
(1995)
Consciousness Cognit.
, vol.4
, pp. 172
-
-
Newman, J.1
-
21
-
-
0028350133
-
-
V. B. Mountcastle, in The Mindful Brain, G. M. Edelman and V. B. Mountcastle, Eds. (MIT Press, Cambridge, MA, 1978), p. 7; A. Damasio, Cognition 33, 25 (1989); R. Llinas, U. Ribary, M. Joliot, X.-J. Wang, in Temporal Coding in the Brain, G. Buzsaki, R. Llinas, W. Singer, Eds. (Springer-Verlag, Berlin, 1994); J. Newman, Consciousness Cognit. 4, 172 (1995); T. W. Picton and D. T. Stuss, Curr. Biol. 4, 256 (1994).
-
(1994)
Curr. Biol.
, vol.4
, pp. 256
-
-
Picton, T.W.1
Stuss, D.T.2
-
22
-
-
0004172276
-
-
Academic Press, San Diego, CA
-
R. S. J. Frackowiak, Human Brain Function (Academic Press, San Diego, CA, 1997); P. E. Roland, Brain Activation (Wiley-Liss, New York, 1993); M. I. Posner and M. E. Raichle, Images of Mind (Scientific American Library, New York, 1994). These imaging studies confirm and extend previous lesion and stimulation studies.
-
(1997)
Human Brain Function
-
-
Frackowiak, R.S.J.1
-
23
-
-
0003509159
-
-
Wiley-Liss, New York
-
R. S. J. Frackowiak, Human Brain Function (Academic Press, San Diego, CA, 1997); P. E. Roland, Brain Activation (Wiley-Liss, New York, 1993); M. I. Posner and M. E. Raichle, Images of Mind (Scientific American Library, New York, 1994). These imaging studies confirm and extend previous lesion and stimulation studies.
-
(1993)
Brain Activation
-
-
Roland, P.E.1
-
24
-
-
0003705211
-
-
Scientific American Library, New York
-
R. S. J. Frackowiak, Human Brain Function (Academic Press, San Diego, CA, 1997); P. E. Roland, Brain Activation (Wiley-Liss, New York, 1993); M. I. Posner and M. E. Raichle, Images of Mind (Scientific American Library, New York, 1994). These imaging studies confirm and extend previous lesion and stimulation studies.
-
(1994)
Images of Mind
-
-
Posner, M.I.1
Raichle, M.E.2
-
25
-
-
0001613440
-
-
A. Peters and E. G. Jones, Eds. Plenum, New York
-
Lesion studies indicate that consciousness is abolished by widely distributed damage but not by localized cortical damage. The only localized brain lesions resulting in loss of consciousness typically affect the reticular core in the upper brainstem and hypothalamus or its rostral extensions in the reticular and intralaminar thalamic nuclei [F. Plum, in Normal and Altered States of Function, A. Peters and E. G. Jones, Eds. (Plenum, New York, 1991), vol. 9, p. 359]. Although it has been suggested that the reticular core may have a privileged connection to conscious experience [J. E. Bogen, Consciousness Cognit. 4, 52 (1995)], its activity may simply be required to sustain distributed activity patterns in the cortex.
-
(1991)
Normal and Altered States of Function
, vol.9
, pp. 359
-
-
Plum, F.1
-
26
-
-
0029258375
-
-
Lesion studies indicate that consciousness is abolished by widely distributed damage but not by localized cortical damage. The only localized brain lesions resulting in loss of consciousness typically affect the reticular core in the upper brainstem and hypothalamus or its rostral extensions in the reticular and intralaminar thalamic nuclei [F. Plum, in Normal and Altered States of Function, A. Peters and E. G. Jones, Eds. (Plenum, New York, 1991), vol. 9, p. 359]. Although it has been suggested that the reticular core may have a privileged connection to conscious experience [J. E. Bogen, Consciousness Cognit. 4, 52 (1995)], its activity may simply be required to sustain distributed activity patterns in the cortex.
-
(1995)
Consciousness Cognit.
, vol.4
, pp. 52
-
-
Bogen, J.E.1
-
27
-
-
0032472267
-
-
A. R. Braun et al., Science 279, 91 (1998); P. Maquet et al., Nature 383, 163 (1996). Neural activity in slow-wave sleep is reduced in both anterior neocortical regions (most of the prefrontal cortex), as well as in posterior cortical regions (especially parietal association areas), in paralimbic structures (anterior cingulate cortex and anterior insula), and in centrencephalic structures (reticular activating system, thalamus, and basal ganglia); in contrast, it is not depressed in unimodal sensory areas (primary visual, auditory, and somatosensory cortex).
-
(1998)
Science
, vol.279
, pp. 91
-
-
Braun, A.R.1
-
28
-
-
0029828471
-
-
A. R. Braun et al., Science 279, 91 (1998); P. Maquet et al., Nature 383, 163 (1996). Neural activity in slow-wave sleep is reduced in both anterior neocortical regions (most of the prefrontal cortex), as well as in posterior cortical regions (especially parietal association areas), in paralimbic structures (anterior cingulate cortex and anterior insula), and in centrencephalic structures (reticular activating system, thalamus, and basal ganglia); in contrast, it is not depressed in unimodal sensory areas (primary visual, auditory, and somatosensory cortex).
-
(1996)
Nature
, vol.383
, pp. 163
-
-
Maquet, P.1
-
29
-
-
0032539867
-
-
G. Tononi, R. Srinivasan, D. P. Russell, G. M. Edelman, Proc. Natl. Acad. Sci. U.S.A. 95, 3198 (1998); R. Srinivasan, D. P. Russell, G. M. Edelman, G. Tononi, Soc. Neurosci. Abstr. 24, 433 (1998).
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 3198
-
-
Tononi, G.1
Srinivasan, R.2
Russell, D.P.3
Edelman, G.M.4
-
30
-
-
0032539867
-
-
G. Tononi, R. Srinivasan, D. P. Russell, G. M. Edelman, Proc. Natl. Acad. Sci. U.S.A. 95, 3198 (1998); R. Srinivasan, D. P. Russell, G. M. Edelman, G. Tononi, Soc. Neurosci. Abstr. 24, 433 (1998).
-
(1998)
Soc. Neurosci. Abstr.
, vol.24
, pp. 433
-
-
Srinivasan, R.1
Russell, D.P.2
Edelman, G.M.3
Tononi, G.4
-
31
-
-
0032477881
-
-
S. E. Petersen, H. vanMier, J. A. Fiez, M. E. Raichle, Proc. Natl. Acad. Sci. U.S.A. 95, 853 (1998); R. J. Haier et al., Brain Res. 570, 134 (1992).
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 853
-
-
Petersen, S.E.1
Vanmier, H.2
Fiez, J.A.3
Raichle, M.E.4
-
32
-
-
0026571263
-
-
S. E. Petersen, H. vanMier, J. A. Fiez, M. E. Raichle, Proc. Natl. Acad. Sci. U.S.A. 95, 853 (1998); R. J. Haier et al., Brain Res. 570, 134 (1992).
-
(1992)
Brain Res.
, vol.570
, pp. 134
-
-
Haier, R.J.1
-
33
-
-
37049240655
-
-
J. A. Horel et al., Science 158, 394 (1967).
-
(1967)
Science
, vol.158
, pp. 394
-
-
Horel, J.A.1
-
35
-
-
0026053771
-
-
O. Sporns, G. Tononi, G. M. Edelman, Proc. Natl. Acad. Sci. U.S.A. 88, 129 (1991); G. Tononi, O. Sporns, G. M. Edelman, Cereb. Cortex 2, 310 (1992).
-
(1991)
Proc. Natl. Acad. Sci. U.S.A.
, vol.88
, pp. 129
-
-
Sporns, O.1
Tononi, G.2
Edelman, G.M.3
-
36
-
-
0026896217
-
-
O. Sporns, G. Tononi, G. M. Edelman, Proc. Natl. Acad. Sci. U.S.A. 88, 129 (1991); G. Tononi, O. Sporns, G. M. Edelman, Cereb. Cortex 2, 310 (1992).
-
(1992)
Cereb. Cortex
, vol.2
, pp. 310
-
-
Tononi, G.1
Sporns, O.2
Edelman, G.M.3
-
37
-
-
0030947940
-
-
E. D. Lumer, G. M. Edelman, G. Tononi, Cereb. Cortex 7, 207 (1997); ibid., p. 228. For example, in a largescale model of the visual system, reentrant interactions between groups of neurons in perceptual or "posterior" areas and in executive or "anterior" areas rapidly led to their synchronous firing and to a correct behavioral discrimination. This discrimination was based on the dynamic binding of multiple visual attributes (position, movement, color, form) and of different levels of stimulus generalization (local features, invariant aspects of stimuli).
-
(1997)
Cereb. Cortex
, vol.7
, pp. 207
-
-
Lumer, E.D.1
Edelman, G.M.2
Tononi, G.3
-
38
-
-
0030947940
-
-
E. D. Lumer, G. M. Edelman, G. Tononi, Cereb. Cortex 7, 207 (1997); ibid., p. 228. For example, in a largescale model of the visual system, reentrant interactions between groups of neurons in perceptual or "posterior" areas and in executive or "anterior" areas rapidly led to their synchronous firing and to a correct behavioral discrimination. This discrimination was based on the dynamic binding of multiple visual attributes (position, movement, color, form) and of different levels of stimulus generalization (local features, invariant aspects of stimuli).
-
Cereb. Cortex
, pp. 228
-
-
-
39
-
-
0003607492
-
-
Freeman, New York
-
B. Kolb and I. Q. Whishaw, Fundamentals of Human Neuropsychology (Freeman, New York, 1996). Psychiatric dissociation syndromes and conversion disorders may originate from a similar alteration of reentrant interactions, although in these cases, the disconnection would be functional rather than anatomical [J. F. Kihlstrom, Consciousness Cognit. 1, 47 (1992)]. Some explicit-implicit dissociations, such as amnesia, may also be due to a partial disconnection of a lesioned area from the more global pattern of neural activity that is associated with consciousness [D. L. Schacter, Proc. Natl. Acad. Sci. U.S.A. 89, 11113 (1992)].
-
(1996)
Fundamentals of Human Neuropsychology
-
-
Kolb, B.1
Whishaw, I.Q.2
-
40
-
-
0002562329
-
-
B. Kolb and I. Q. Whishaw, Fundamentals of Human Neuropsychology (Freeman, New York, 1996). Psychiatric dissociation syndromes and conversion disorders may originate from a similar alteration of reentrant interactions, although in these cases, the disconnection would be functional rather than anatomical [J. F. Kihlstrom, Consciousness Cognit. 1, 47 (1992)]. Some explicit-implicit dissociations, such as amnesia, may also be due to a partial disconnection of a lesioned area from the more global pattern of neural activity that is associated with consciousness [D. L. Schacter, Proc. Natl. Acad. Sci. U.S.A. 89, 11113 (1992)].
-
(1992)
Consciousness Cognit.
, vol.1
, pp. 47
-
-
Kihlstrom, J.F.1
-
41
-
-
0026492341
-
-
B. Kolb and I. Q. Whishaw, Fundamentals of Human Neuropsychology (Freeman, New York, 1996). Psychiatric dissociation syndromes and conversion disorders may originate from a similar alteration of reentrant interactions, although in these cases, the disconnection would be functional rather than anatomical [J. F. Kihlstrom, Consciousness Cognit. 1, 47 (1992)]. Some explicit-implicit dissociations, such as amnesia, may also be due to a partial disconnection of a lesioned area from the more global pattern of neural activity that is associated with consciousness [D. L. Schacter, Proc. Natl. Acad. Sci. U.S.A. 89, 11113 (1992)].
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 11113
-
-
Schacter, D.L.1
-
43
-
-
0026342392
-
-
A. K. Engel, P. König, A. K. Kreiter, W. Singer, Science 252, 1177 (1991).
-
(1991)
Science
, vol.252
, pp. 1177
-
-
Engel, A.K.1
König, P.2
Kreiter, A.K.3
Singer, W.4
-
44
-
-
0029008978
-
-
S. L. Bressler, Brain Res. Rev. 20, 288 (1995); W. Singer and C. M. Gray, Annu. Rev. Neurosci. 18, 555 (1995); M. Joliot, U. Ribary, R. Llinas, Proc. Natl. Acad. Sci. U.S.A. 91, 11748 (1994); A. Gevins et al., Electroencephalogr. Clin. Neurophysiol. 98, 327 (1996).
-
(1995)
Brain Res. Rev.
, vol.20
, pp. 288
-
-
Bressler, S.L.1
-
45
-
-
0028969330
-
-
S. L. Bressler, Brain Res. Rev. 20, 288 (1995); W. Singer and C. M. Gray, Annu. Rev. Neurosci. 18, 555 (1995); M. Joliot, U. Ribary, R. Llinas, Proc. Natl. Acad. Sci. U.S.A. 91, 11748 (1994); A. Gevins et al., Electroencephalogr. Clin. Neurophysiol. 98, 327 (1996).
-
(1995)
Annu. Rev. Neurosci.
, vol.18
, pp. 555
-
-
Singer, W.1
Gray, C.M.2
-
46
-
-
0028134901
-
-
S. L. Bressler, Brain Res. Rev. 20, 288 (1995); W. Singer and C. M. Gray, Annu. Rev. Neurosci. 18, 555 (1995); M. Joliot, U. Ribary, R. Llinas, Proc. Natl. Acad. Sci. U.S.A. 91, 11748 (1994); A. Gevins et al., Electroencephalogr. Clin. Neurophysiol. 98, 327 (1996).
-
(1994)
Proc. Natl. Acad. Sci. U.S.A.
, vol.91
, pp. 11748
-
-
Joliot, M.1
Ribary, U.2
Llinas, R.3
-
47
-
-
0029951042
-
-
S. L. Bressler, Brain Res. Rev. 20, 288 (1995); W. Singer and C. M. Gray, Annu. Rev. Neurosci. 18, 555 (1995); M. Joliot, U. Ribary, R. Llinas, Proc. Natl. Acad. Sci. U.S.A. 91, 11748 (1994); A. Gevins et al., Electroencephalogr. Clin. Neurophysiol. 98, 327 (1996).
-
(1996)
Electroencephalogr. Clin. Neurophysiol.
, vol.98
, pp. 327
-
-
Gevins, A.1
-
48
-
-
0020742492
-
-
A. J. Marcel, Cognit. Psychol. 15, 238 (1983); ibid., p. 197; P. M. Merikle, Am. Psychol. 47, 792 (1992). In some cases, perception without awareness has been shown to occur with stimuli that are not short-lasting or weak [F. C. Kolb and J. Braun, Nature 377, 336 (1995); S. He, H. S. Smallman, D. I. A. MacLeod, Invest. Ophthalmol. Visual Sci. 36, S438 (1995).
-
(1983)
Cognit. Psychol.
, vol.15
, pp. 238
-
-
Marcel, A.J.1
-
49
-
-
0020742492
-
-
A. J. Marcel, Cognit. Psychol. 15, 238 (1983); ibid., p. 197; P. M. Merikle, Am. Psychol. 47, 792 (1992). In some cases, perception without awareness has been shown to occur with stimuli that are not short-lasting or weak [F. C. Kolb and J. Braun, Nature 377, 336 (1995); S. He, H. S. Smallman, D. I. A. MacLeod, Invest. Ophthalmol. Visual Sci. 36, S438 (1995).
-
Cognit. Psychol.
, pp. 197
-
-
-
50
-
-
0026876810
-
-
A. J. Marcel, Cognit. Psychol. 15, 238 (1983); ibid., p. 197; P. M. Merikle, Am. Psychol. 47, 792 (1992). In some cases, perception without awareness has been shown to occur with stimuli that are not short-lasting or weak [F. C. Kolb and J. Braun, Nature 377, 336 (1995); S. He, H. S. Smallman, D. I. A. MacLeod, Invest. Ophthalmol. Visual Sci. 36, S438 (1995).
-
(1992)
Am. Psychol.
, vol.47
, pp. 792
-
-
Merikle, P.M.1
-
51
-
-
0029156741
-
-
A. J. Marcel, Cognit. Psychol. 15, 238 (1983); ibid., p. 197; P. M. Merikle, Am. Psychol. 47, 792 (1992). In some cases, perception without awareness has been shown to occur with stimuli that are not short-lasting or weak [F. C. Kolb and J. Braun, Nature 377, 336 (1995); S. He, H. S. Smallman, D. I. A. MacLeod, Invest. Ophthalmol. Visual Sci. 36, S438 (1995).
-
(1995)
Nature
, vol.377
, pp. 336
-
-
Kolb, F.C.1
Braun, J.2
-
52
-
-
0020742492
-
-
A. J. Marcel, Cognit. Psychol. 15, 238 (1983); ibid., p. 197; P. M. Merikle, Am. Psychol. 47, 792 (1992). In some cases, perception without awareness has been shown to occur with stimuli that are not short-lasting or weak [F. C. Kolb and J. Braun, Nature 377, 336 (1995); S. He, H. S. Smallman, D. I. A. MacLeod, Invest. Ophthalmol. Visual Sci. 36, S438 (1995).
-
(1995)
Invest. Ophthalmol. Visual Sci.
, vol.36
-
-
He, S.1
Smallman, H.S.2
MacLeod, D.I.A.3
-
54
-
-
0028788044
-
-
J. H. Maunsell, Science 270, 764 (1995); K. J. Friston, Proc. Natl. Acad. Sci. U.S.A. 95, 796 (1998).
-
(1995)
Science
, vol.270
, pp. 764
-
-
Maunsell, J.H.1
-
59
-
-
0021920950
-
-
J. M. Fuster, R. H. Bauer, J. P. Jervey, Brain Res. 330, 299 (1985); P. S. Goldman-Rakic and M. Chafee, Soc. Neurosci. Abstr. 20, 808 (1994).
-
(1985)
Brain Res.
, vol.330
, pp. 299
-
-
Fuster, J.M.1
Bauer, R.H.2
Jervey, J.P.3
-
60
-
-
0021920950
-
-
J. M. Fuster, R. H. Bauer, J. P. Jervey, Brain Res. 330, 299 (1985); P. S. Goldman-Rakic and M. Chafee, Soc. Neurosci. Abstr. 20, 808 (1994).
-
(1994)
Soc. Neurosci. Abstr.
, vol.20
, pp. 808
-
-
Goldman-Rakic, P.S.1
Chafee, M.2
-
61
-
-
0029975584
-
-
The idea that neural activity must persist for a minimum period of time in order to contribute to conscious experience is also suggested by the phenomenon of masking [J. L. Taylor and D. I. McCloskey, Exp. Brain Res. 110, 62 (1996); K. J. Meador et al., Neurology 51, 721 (1998)].
-
(1996)
Exp. Brain Res.
, vol.110
, pp. 62
-
-
Taylor, J.L.1
McCloskey, D.I.2
-
62
-
-
0031721032
-
-
The idea that neural activity must persist for a minimum period of time in order to contribute to conscious experience is also suggested by the phenomenon of masking [J. L. Taylor and D. I. McCloskey, Exp. Brain Res. 110, 62 (1996); K. J. Meador et al., Neurology 51, 721 (1998)].
-
(1998)
Neurology
, vol.51
, pp. 721
-
-
Meador, K.J.1
-
63
-
-
0030757455
-
-
M. Steriade, Cereb. Cortex 7, 583 (1997); D. Kahn, E. F. Pace-Schott, J. A. Hobson, Neuroscience 78, 13 (1997).
-
(1997)
Cereb. Cortex
, vol.7
, pp. 583
-
-
Steriade, M.1
-
64
-
-
0031001260
-
-
M. Steriade, Cereb. Cortex 7, 583 (1997); D. Kahn, E. F. Pace-Schott, J. A. Hobson, Neuroscience 78, 13 (1997).
-
(1997)
Neuroscience
, vol.78
, pp. 13
-
-
Kahn, D.1
Pace-Schott, E.F.2
Hobson, J.A.3
-
65
-
-
0032082503
-
-
Neural activity must also exhibit sufficient variance in time to support conscious perception. For example, if images on the retina are stabilized, perception fades rapidly, and a similar effect is seen in Ganzfeld stimulation. Short-lasting visual stimuli become invisible if the transient neuronal responses associated with their onset and offset are suppressed by masking stimuli [S. L. Macknik and M. S. Livingstone, Nature Neurosci. 1, 144 (1998)].
-
(1998)
Nature Neurosci.
, vol.1
, pp. 144
-
-
Macknik, S.L.1
Livingstone, M.S.2
-
66
-
-
0031927480
-
-
G. Tononi, A. R. McIntosh, D. P. Russell, G. M. Edelman, Neuroimage 7, 133 (1998).
-
(1998)
Neuroimage
, vol.7
, pp. 133
-
-
Tononi, G.1
McIntosh, A.R.2
Russell, D.P.3
Edelman, G.M.4
-
67
-
-
0003663467
-
-
McGraw-Hill, New York
-
As a measure of statistical dependence, mutual information has the virtue of being highly general, because it is multivariate and sensitive to high-order moments of statistical dependence [A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1991)]. Note that mutual information reflects a statistical dependence among subsets of a system, irrespective of its source. The presence and direction of causal interactions between two subsets of a system can be evaluated, at least in principle, by measuring the change in mutual information obtained by perturbing or deefferenting each subset in turn.
-
(1991)
Probability, Random Variables, and Stochastic Processes
-
-
Papoulis, A.1
-
68
-
-
0028884436
-
-
These observations are of interest in view of the well-known action of certain so-called dissociative anesthetics, such as ketamine and phencyclidine, that act as noncompetitive antagonists of the N-methyl-D-aspartate receptor [H. Flohr, Behav. Brain Res. 71, 157 (1995)].
-
(1995)
Behav. Brain Res.
, vol.71
, pp. 157
-
-
Flohr, H.1
-
69
-
-
0028245445
-
-
1) - I(X) [G. Tononi, G. M. Edelman, O. Sporns, Trends Cognit. Sci., in press]. Note that complexity measures should be applied to a single system (a functional cluster) and not to a collection of independent or nearly independent subsystems.
-
(1994)
Proc. Natl. Acad. Sci. U.S.A.
, vol.91
, pp. 5033
-
-
Tononi, G.1
Sporns, O.2
Edelman, G.M.3
-
70
-
-
85177148502
-
-
in press
-
1) - I(X) [G. Tononi, G. M. Edelman, O. Sporns, Trends Cognit. Sci., in press]. Note that complexity measures should be applied to a single system (a functional cluster) and not to a collection of independent or nearly independent subsystems.
-
Trends Cognit. Sci.
-
-
Tononi, G.1
Edelman, G.M.2
Sporns, O.3
-
71
-
-
0029866128
-
-
Changes in complexity can be obtained without modifying the anatomical connectivity of the model by simulating the transition between the burst-pause pattern of firing typical of slow-wave sleep and the tonic mode of firing typical of waking and REM sleep (G. Tononi, unpublished material). It should be noted that high complexity is not easy to achieve. A system of elements that are randomly interconnected, for instance, may look very complicated, but it has low values of complexity. On the other hand, systems that undergo selective processes so as to match the statistical structure of a rich environment will gradually increase their complexity [G. Tononi, O. Sporns, G. M. Edelman, Proc. Natl. Acad. Sci. U.S.A. 93, 3422 (1996)].
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 3422
-
-
Tononi, G.1
Sporns, O.2
Edelman, G.M.3
-
72
-
-
0001457656
-
-
K. J. Friston, G. Tononi, O. Sporns, G. M. Edelman, Hum. Brain Mapp. 3, 302 (1995).
-
(1995)
Hum. Brain Mapp.
, vol.3
, pp. 302
-
-
Friston, K.J.1
Tononi, G.2
Sporns, O.3
Edelman, G.M.4
-
74
-
-
0030050001
-
-
D. A. Leopold and N. K. Logothetis, Nature 379, 549 (1996); D. L. Shenberg and N. K. Logothetis, Proc. Natl. Acad. Sci. U.S.A. 94, 3408 (1997). For other instances of dissociation, see (26); M. Gur and D. M. Snodderly, Vision Res. 37, 377 (1997); I. N. Pigarev, H. C. Nothdurft, S. Kastner, Neuroreport 8, 2557 (1997); D. C. Bradley, G. C. Chang, R. A. Andersen, Nature 392, 714 (1998).
-
(1996)
Nature
, vol.379
, pp. 549
-
-
Leopold, D.A.1
Logothetis, N.K.2
-
75
-
-
0030914285
-
-
D. A. Leopold and N. K. Logothetis, Nature 379, 549 (1996); D. L. Shenberg and N. K. Logothetis, Proc. Natl. Acad. Sci. U.S.A. 94, 3408 (1997). For other instances of dissociation, see (26); M. Gur and D. M. Snodderly, Vision Res. 37, 377 (1997); I. N. Pigarev, H. C. Nothdurft, S. Kastner, Neuroreport 8, 2557 (1997); D. C. Bradley, G. C. Chang, R. A. Andersen, Nature 392, 714 (1998).
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 3408
-
-
Shenberg, D.L.1
Logothetis, N.K.2
-
76
-
-
0031051401
-
-
D. A. Leopold and N. K. Logothetis, Nature 379, 549 (1996); D. L. Shenberg and N. K. Logothetis, Proc. Natl. Acad. Sci. U.S.A. 94, 3408 (1997). For other instances of dissociation, see (26); M. Gur and D. M. Snodderly, Vision Res. 37, 377 (1997); I. N. Pigarev, H. C. Nothdurft, S. Kastner, Neuroreport 8, 2557 (1997); D. C. Bradley, G. C. Chang, R. A. Andersen, Nature 392, 714 (1998).
-
(1997)
Vision Res.
, vol.37
, pp. 377
-
-
Gur, M.1
Snodderly, D.M.2
-
77
-
-
0030851610
-
-
D. A. Leopold and N. K. Logothetis, Nature 379, 549 (1996); D. L. Shenberg and N. K. Logothetis, Proc. Natl. Acad. Sci. U.S.A. 94, 3408 (1997). For other instances of dissociation, see (26); M. Gur and D. M. Snodderly, Vision Res. 37, 377 (1997); I. N. Pigarev, H. C. Nothdurft, S. Kastner, Neuroreport 8, 2557 (1997); D. C. Bradley, G. C. Chang, R. A. Andersen, Nature 392, 714 (1998).
-
(1997)
Neuroreport
, vol.8
, pp. 2557
-
-
Pigarev, I.N.1
Nothdurft, H.C.2
Kastner, S.3
-
78
-
-
0032537115
-
-
D. A. Leopold and N. K. Logothetis, Nature 379, 549 (1996); D. L. Shenberg and N. K. Logothetis, Proc. Natl. Acad. Sci. U.S.A. 94, 3408 (1997). For other instances of dissociation, see (26); M. Gur and D. M. Snodderly, Vision Res. 37, 377 (1997); I. N. Pigarev, H. C. Nothdurft, S. Kastner, Neuroreport 8, 2557 (1997); D. C. Bradley, G. C. Chang, R. A. Andersen, Nature 392, 714 (1998).
-
(1998)
Nature
, vol.392
, pp. 714
-
-
Bradley, D.C.1
Chang, G.C.2
Andersen, R.A.3
-
79
-
-
0347243119
-
-
D. J. Simons and D. T. Levin, Trends Cogn. Sci. 1, 261 (1997). The neurological evidence is in agreement with these psychological observations. In the adult, lesions of the retina produce blindness, but they do not eliminate visual imagery, visual memories, and visual dreams, while the latter are eliminated by lesions of certain visual cortical areas [M. Solms, The Neuropsychology of Dreams (Erlbaum, Mahwah, NJ, 1997)]. V1 may be important, however, to provide visual consciousness with a certain degree of detail. See also R. Jackendoff [Consciousness and the Computational Mind (MIT Press, Cambridge, MA, 1987)].
-
(1997)
Trends Cogn. Sci.
, vol.1
, pp. 261
-
-
Simons, D.J.1
Levin, D.T.2
-
80
-
-
0347243119
-
-
Erlbaum, Mahwah, NJ
-
D. J. Simons and D. T. Levin, Trends Cogn. Sci. 1, 261 (1997). The neurological evidence is in agreement with these psychological observations. In the adult, lesions of the retina produce blindness, but they do not eliminate visual imagery, visual memories, and visual dreams, while the latter are eliminated by lesions of certain visual cortical areas [M. Solms, The Neuropsychology of Dreams (Erlbaum, Mahwah, NJ, 1997)]. V1 may be important, however, to provide visual consciousness with a certain degree of detail. See also R. Jackendoff [Consciousness and the Computational Mind (MIT Press, Cambridge, MA, 1987)].
-
(1997)
The Neuropsychology of Dreams
-
-
Solms, M.1
-
81
-
-
0347243119
-
-
MIT Press, Cambridge, MA
-
D. J. Simons and D. T. Levin, Trends Cogn. Sci. 1, 261 (1997). The neurological evidence is in agreement with these psychological observations. In the adult, lesions of the retina produce blindness, but they do not eliminate visual imagery, visual memories, and visual dreams, while the latter are eliminated by lesions of certain visual cortical areas [M. Solms, The Neuropsychology of Dreams (Erlbaum, Mahwah, NJ, 1997)]. V1 may be important, however, to provide visual consciousness with a certain degree of detail. See also R. Jackendoff [Consciousness and the Computational Mind (MIT Press, Cambridge, MA, 1987)].
-
(1987)
Consciousness and the Computational Mind
-
-
Jackendoff, R.1
-
82
-
-
0006513547
-
-
J. D. Cohen and J. W. Schooler, Eds. Erlbaum, Mahwah, NJ
-
R. M. Shiffrin, in Scientific Approaches to Consciousness, J. D. Cohen and J. W. Schooler, Eds. (Erlbaum, Mahwah, NJ, 1997), p. 49; L. L. Jacoby, D. Ste-Marie, J. P. Toth, in Attention: Selection, Awareness, and Control, A. D. Baddeley and L. Weiskrantz, Eds. (Clarendon, Oxford, 1993), p. 261; W. Schneider, M. Pimm-Smith, M. Worden, Curr. Opin. Neurobiol. 4, 177 (1994).
-
(1997)
Scientific Approaches to Consciousness
, pp. 49
-
-
Shiffrin, R.M.1
-
83
-
-
0001124132
-
-
A. D. Baddeley and L. Weiskrantz, Eds. Clarendon, Oxford
-
R. M. Shiffrin, in Scientific Approaches to Consciousness, J. D. Cohen and J. W. Schooler, Eds. (Erlbaum, Mahwah, NJ, 1997), p. 49; L. L. Jacoby, D. Ste-Marie, J. P. Toth, in Attention: Selection, Awareness, and Control, A. D. Baddeley and L. Weiskrantz, Eds. (Clarendon, Oxford, 1993), p. 261; W. Schneider, M. Pimm-Smith, M. Worden, Curr. Opin. Neurobiol. 4, 177 (1994).
-
(1993)
Attention: Selection, Awareness, and Control
, pp. 261
-
-
Jacoby, L.L.1
Ste-Marie, D.2
Toth, J.P.3
-
84
-
-
0028209610
-
-
R. M. Shiffrin, in Scientific Approaches to Consciousness, J. D. Cohen and J. W. Schooler, Eds. (Erlbaum, Mahwah, NJ, 1997), p. 49; L. L. Jacoby, D. Ste-Marie, J. P. Toth, in Attention: Selection, Awareness, and Control, A. D. Baddeley and L. Weiskrantz, Eds. (Clarendon, Oxford, 1993), p. 261; W. Schneider, M. Pimm-Smith, M. Worden, Curr. Opin. Neurobiol. 4, 177 (1994).
-
(1994)
Curr. Opin. Neurobiol.
, vol.4
, pp. 177
-
-
Schneider, W.1
Pimm-Smith, M.2
Worden, M.3
-
85
-
-
0029118845
-
-
A. D. Milner, Neuropsychologia 33, 1117 (1995); _ and M. A. Goodale, The Visual Brain in Action (Oxford Univ. Press, New York, 1995).
-
(1995)
Neuropsychologia
, vol.33
, pp. 1117
-
-
Milner, A.D.1
-
86
-
-
0029118845
-
-
Oxford Univ. Press, New York
-
A. D. Milner, Neuropsychologia 33, 1117 (1995); _ and M. A. Goodale, The Visual Brain in Action (Oxford Univ. Press, New York, 1995).
-
(1995)
The Visual Brain in Action
-
-
Goodale, M.A.1
-
87
-
-
3743104622
-
-
unpublished material
-
The organization of the anatomical connectivity of certain brain regions, such as the thalamocortical system, is much more effective in generating coherent dynamic states than that of other regions, such as the cerebellum or the basal ganglia (G. Tononi, unpublished material). Consistent with this, although in cortical and thalamic areas 20 to 50% of all pairs of neurons recorded are broadly synchronized, neurons in the internal segment of the globus pallidus, the output station of the basal ganglia, are almost completely uncorrelated [H. Bergman et al., Trends Neurosci. 21, 32 (1998)].
-
-
-
Tononi, G.1
-
88
-
-
0013583334
-
-
The organization of the anatomical connectivity of certain brain regions, such as the thalamocortical system, is much more effective in generating coherent dynamic states than that of other regions, such as the cerebellum or the basal ganglia (G. Tononi, unpublished material). Consistent with this, although in cortical and thalamic areas 20 to 50% of all pairs of neurons recorded are broadly synchronized, neurons in the internal segment of the globus pallidus, the output station of the basal ganglia, are almost completely uncorrelated [H. Bergman et al., Trends Neurosci. 21, 32 (1998)].
-
(1998)
Trends Neurosci.
, vol.21
, pp. 32
-
-
Bergman, H.1
-
89
-
-
3743102435
-
-
note
-
If the fast integration of neural activity comes at a premium in terms of number of connections and energetic requirements, neuronal groups in "higher" areas should be privileged members of the dynamic core underlying consciousness. Everything else being equal, their firing is more informative, in the sense that it rules out a larger number of possibilities. For example, the firing of face-selective neurons in area IT considerably reduces uncertainty about a visual scene (seeing a face rules out countless other visual scenes), while the firing of retinal neurons reduces uncertainty by much less (a bright spot in a certain position of the visual field is consistent with countless visual scenes). The results of studies of binocular rivalry in monkeys and humans mentioned above are consistent with this view.
-
-
-
-
90
-
-
3743149250
-
-
note
-
We emphasize that the dynamic core, the highly complex, rapidly established functional cluster proposed to underlie conscious experience, is in no way the only integrated but distributed neural process that is relevant to brain function. We have hypothesized that distributed but integrated neural processes called global mappings, encompassing portions of the thalamocortical system, as well as parallel loops through cortical appendages such as the basal ganglia, the hippocampus, and the cerebellum, underlie the unity of behavioral sequences (4). The functional integration of global mappings is envisioned to occur at longer time scales than the dynamic core (seconds as opposed to fractions of a second). However, these two kinds of dynamic processes are expected to partially overlap for short periods of time.
-
-
-
-
91
-
-
3743135987
-
-
note
-
Qualia - the seemingly inexplicable phenomenological manifestations of conscious experience - are conceived within this framework as rapid, highly informative discriminations within a repertoire of billions of neural states available to a unified neural process of great complexity. They correspond to the generation of a large amount of information in a short period of time. In this view, each quale - even a seemingly simple quale like a feeling of "redness" -corresponds to a discriminable state of the dynamic core in its entirety, and not merely to the state of a specific group of neurons in a certain brain area. The subjective meaning or quale of "redness," for example, would be defined by the (increased) activity of red-selective neurons as much as by the (reduced or unmodified) activity of neuronal groups selective for green or blue, for visual motion or shape, for auditory or somatosensory events, and for proprioceptive inputs, body schemas, emotions, intentions, and so forth, that jointly constitute the dynamic core. This view is antithetical to modular or atomistic approaches to consciousness (2).
-
-
-
-
92
-
-
0028921592
-
-
E. Vaadia et al., Nature 373, 515 (1995).
-
(1995)
Nature
, vol.373
, pp. 515
-
-
Vaadia, E.1
-
93
-
-
0030044359
-
-
E. Seidemann, I. Meilijson, M. Abeles, H. Bergman, E. Vaadia, J. Neurosci. 16, 752 (1996).
-
(1996)
J. Neurosci.
, vol.16
, pp. 752
-
-
Seidemann, E.1
Meilijson, I.2
Abeles, M.3
Bergman, H.4
Vaadia, E.5
-
94
-
-
3743129330
-
-
note
-
It is perhaps worth pointing out that our analysis predicts the possibility of constructing a conscious artifact and outlines some key principles that should constrain its construction. This work was carried out as part of the theoretical neurobiology program at The Neurosciences Institute, which is supported by Neurosciences Research Foundation. The Foundation receives major support for this program from Novartis Pharmaceutical Corporation and the W. M. Keck Foundation.
-
-
-
|