메뉴 건너뛰기




Volumn 61, Issue 8, 2013, Pages 2009-2015

Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation

Author keywords

Block sparse model; compressed sensing; intra block correlation; sparse Bayesian learning (SBL); sparse signal recovery

Indexed keywords

BLOCK SPARSE; BLOCK SPARSE MODELS; BLOCK STRUCTURES; BLOCK-SPARSE SIGNALS; IMPROVE PERFORMANCE; RECOVERY PERFORMANCE; SPARSE BAYESIAN LEARNING (SBL); SPARSE SIGNAL RECOVERIES;

EID: 84875677250     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2013.2241055     Document Type: Article
Times cited : (489)

References (20)
  • 4
    • 77952576986 scopus 로고    scopus 로고
    • Block-sparse signals: Uncertainty relations and efficient recovery
    • Y. C. Eldar, P. Kuppinger, and H. Bolcskei, "Block-sparse signals: uncertainty relations and efficient recovery," IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3042-3054, 2010.
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.6 , pp. 3042-3054
    • Eldar, Y.C.1    Kuppinger, P.2    Bolcskei, H.3
  • 5
    • 65649137930 scopus 로고    scopus 로고
    • Probing the Pareto frontier for basis pursuit solutions
    • E. V. D. Berg and M. Friedlander, "Probing the Pareto frontier for basis pursuit solutions," SIAM J. Scientif. Comput., vol. 31, no. 2, pp. 890-912, 2008.
    • (2008) SIAM J. Scientif. Comput. , vol.31 , Issue.2 , pp. 890-912
    • Berg, E.V.D.1    Friedlander, M.2
  • 6
    • 70350743173 scopus 로고    scopus 로고
    • Robust recovery of signals from a structured union of subspaces
    • Y. C. Eldar and M. Mishali, "Robust recovery of signals from a structured union of subspaces," IEEE Trans Inf. Theory, vol. 55, no. 11, pp. 5302-5316, 2009.
    • (2009) IEEE Trans Inf. Theory , vol.55 , Issue.11 , pp. 5302-5316
    • Eldar, Y.C.1    Mishali, M.2
  • 7
    • 71149112556 scopus 로고    scopus 로고
    • Learning with structured spar-sity
    • J. Huang, T. Zhang, and D. Metaxas, "Learning with structured spar-sity," Proc. ICML, pp. 417-424, 2009.
    • (2009) Proc. ICML , pp. 417-424
    • Huang, J.1    Zhang, T.2    Metaxas, D.3
  • 8
    • 80052297409 scopus 로고    scopus 로고
    • Bayesian compressive sensing for cluster structured sparse signals
    • L. Yu, H. Sun, J. P. Barbot, and G. Zheng, "Bayesian compressive sensing for cluster structured sparse signals," Signal Process., vol. 92, no. 1, pp. 259-269, 2012.
    • (2012) Signal Process. , vol.92 , Issue.1 , pp. 259-269
    • Yu, L.1    Sun, H.2    Barbot, J.P.3    Zheng, G.4
  • 9
    • 84860009365 scopus 로고    scopus 로고
    • Exploiting statistical dependencies in sparse representations for signal recovery
    • T. Peleg, Y. Eldar, and M. Elad, "Exploiting statistical dependencies in sparse representations for signal recovery," IEEE Trans. Signal Process., vol. 60, no. 5, pp. 2286-2303, 2012.
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.5 , pp. 2286-2303
    • Peleg, T.1    Eldar, Y.2    Elad, M.3
  • 10
    • 84872519432 scopus 로고    scopus 로고
    • Compressed sensing for energy-efficient wireless telemonitoring of non-invasive fetal ECG via block sparse Bayesian learning
    • Z. Zhang, T.-P. Jung, S. Makeig, and B. D. Rao, "Compressed sensing for energy-efficient wireless telemonitoring of non-invasive fetal ECG via block sparse Bayesian learning," IEEE Trans. Biomed. Eng., vol. 60, no. 2, pp. 300-309, 2013.
    • (2013) IEEE Trans. Biomed. Eng. , vol.60 , Issue.2 , pp. 300-309
    • Zhang, Z.1    Jung, T.-P.2    Makeig, S.3    Rao, B.D.4
  • 11
    • 80051711912 scopus 로고    scopus 로고
    • Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning
    • Z. Zhang and B. D. Rao, "Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning," IEEE J. Sel. Topics Signal Process., vol. 5, no. 5, pp. 912-926, 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.5 , pp. 912-926
    • Zhang, Z.1    Rao, B.D.2
  • 12
    • 23844477225 scopus 로고    scopus 로고
    • Sparse solutions to linear inverse problems with multiple measurement vectors
    • DOI 10.1109/TSP.2005.849172
    • S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, "Sparse solutions to linear inverse problems with multiple measurement vectors," IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2477-2488, 2005. (Pubitemid 41174440)
    • (2005) IEEE Transactions on Signal Processing , vol.53 , Issue.7 , pp. 2477-2488
    • Cotter, S.F.1    Rao, B.D.2    Engan, K.3    Kreutz-Delgado, K.4
  • 13
    • 84867603672 scopus 로고    scopus 로고
    • Recovery of block sparse signals using the framework of block sparse Bayesian learning
    • Z. Zhang and B. D. Rao, "Recovery of block sparse signals using the framework of block sparse Bayesian learning," in Proc. Int. Conf. Acoust, Speech, Signal Process. (ICASSP), 2012, pp. 3345-3348.
    • (2012) Proc. Int. Conf. Acoust, Speech, Signal Process. (ICASSP) , pp. 3345-3348
    • Zhang, Z.1    Rao, B.D.2
  • 14
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • DOI 10.1162/15324430152748236
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 15
    • 84857452383 scopus 로고    scopus 로고
    • Spice and likes: Two hyperparameter-free methods for sparse-parameter estimation
    • P. Stoica and P. Babu, "Spice and likes: Two hyperparameter-free methods for sparse-parameter estimation," Signal Process., vol. 92, no. 7, pp. 1580-1590, 2012.
    • (2012) Signal Process. , vol.92 , Issue.7 , pp. 1580-1590
    • Stoica, P.1    Babu, P.2
  • 16
    • 84877701671 scopus 로고    scopus 로고
    • Exploiting correlation in sparse signal recovery problems: Multiple measurement vectors, block sparsity, and time-varying sparsity
    • Bellevue, WA, USA
    • Z. Zhang and B. D. Rao, "Exploiting correlation in sparse signal recovery problems: Multiple measurement vectors, block sparsity, and time-varying sparsity," presented at the Workshop on Structured Spar-sity: Learning and Inference (ICML), Bellevue, WA, USA, 2011.
    • (2011) Workshop on Structured Spar-sity: Learning and Inference (ICML)
    • Zhang, Z.1    Rao, B.D.2
  • 17
    • 77949736709 scopus 로고    scopus 로고
    • Iterative reweighted and methods for finding sparse solutions
    • D. Wipf and S. Nagarajan, "Iterative reweighted and methods for finding sparse solutions," IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 317-329, 2010.
    • (2010) IEEE J. Sel. Topics Signal Process. , vol.4 , Issue.2 , pp. 317-329
    • Wipf, D.1    Nagarajan, S.2
  • 18
    • 84858280765 scopus 로고    scopus 로고
    • Strong rules for discarding predictors in Lassotype problems
    • R. Tibshirani et al., "Strong rules for discarding predictors in Lassotype problems," J. R. Statist. Soc. B, vol. 74, 2012.
    • (2012) J. R. Statist. Soc. B , vol.74
    • Tibshirani, R.1
  • 20
    • 73149095252 scopus 로고    scopus 로고
    • Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing
    • D. Donoho and J. Tanner, "Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing," Philos. Trans. Roy. Soc. A, vol. 367, no. 1906, pp. 4273-4293, 2009.
    • (2009) Philos. Trans. Roy. Soc. A , vol.367 , Issue.1906 , pp. 4273-4293
    • Donoho, D.1    Tanner, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.