메뉴 건너뛰기




Volumn 11, Issue 10, 2015, Pages

Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL RNA; MESSENGER RNA; RIBONUCLEASE; TRANSCRIPTOME;

EID: 84946606812     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1005613     Document Type: Article
Times cited : (144)

References (68)
  • 1
    • 66849109240 scopus 로고    scopus 로고
    • The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins
    • Kramer G, Boehringer D, Ban N, Bukau B, (2009) The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16: 589–597. doi: 10.1038/nsmb.1614 19491936
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 589-597
    • Kramer, G.1    Boehringer, D.2    Ban, N.3    Bukau, B.4
  • 2
    • 84925553022 scopus 로고    scopus 로고
    • Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo
    • Pechmann S, Chartron JW, Frydman J, (2014) Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat Struct Mol Biol 21: 1100–1105. doi: 10.1038/nsmb.2919 25420103
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 1100-1105
    • Pechmann, S.1    Chartron, J.W.2    Frydman, J.3
  • 3
    • 79551690253 scopus 로고    scopus 로고
    • Folding at the birth of the nascent chain: coordinating translation with co-translational folding
    • Zhang G, Ignatova Z, (2011) Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr Opin Struct Biol 21: 25–31. doi: 10.1016/j.sbi.2010.10.008 21111607
    • (2011) Curr Opin Struct Biol , vol.21 , pp. 25-31
    • Zhang, G.1    Ignatova, Z.2
  • 4
    • 0015907492 scopus 로고
    • The dynamics of nucleic-acid single-strand conformation changes. Oligo- and polyriboadenylic acids
    • Porschke D, (1973) The dynamics of nucleic-acid single-strand conformation changes. Oligo- and polyriboadenylic acids. European journal of biochemistry / FEBS 39: 117–126. 4770785
    • (1973) European journal of biochemistry / FEBS , vol.39 , pp. 117-126
    • Porschke, D.1
  • 5
    • 84893427735 scopus 로고    scopus 로고
    • In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features
    • Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, et al. (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505: 696–700. doi: 10.1038/nature12756 24270811
    • (2014) Nature , vol.505 , pp. 696-700
    • Ding, Y.1    Tang, Y.2    Kwok, C.K.3    Zhang, Y.4    Bevilacqua, P.C.5
  • 6
    • 77956306662 scopus 로고    scopus 로고
    • Genome-wide measurement of RNA secondary structure in yeast
    • Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, et al. (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467: 103–107. doi: 10.1038/nature09322 20811459
    • (2010) Nature , vol.467 , pp. 103-107
    • Kertesz, M.1    Wan, Y.2    Mazor, E.3    Rinn, J.L.4    Nutter, R.C.5
  • 7
    • 84871887837 scopus 로고    scopus 로고
    • Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome
    • Li F, Zheng Q, Vandivier LE, Willmann MR, Chen Y, et al. (2012) Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome. Plant Cell 24: 4346–4359. doi: 10.1105/tpc.112.104232 23150631
    • (2012) Plant Cell , vol.24 , pp. 4346-4359
    • Li, F.1    Zheng, Q.2    Vandivier, L.E.3    Willmann, M.R.4    Chen, Y.5
  • 8
    • 84893351549 scopus 로고    scopus 로고
    • Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo
    • Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS, (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505: 701–705. doi: 10.1038/nature12894 24336214
    • (2014) Nature , vol.505 , pp. 701-705
    • Rouskin, S.1    Zubradt, M.2    Washietl, S.3    Kellis, M.4    Weissman, J.S.5
  • 9
    • 84925777836 scopus 로고    scopus 로고
    • Structural imprints in vivo decode RNA regulatory mechanisms
    • Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, et al. (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519: 486–490. doi: 10.1038/nature14263 25799993
    • (2015) Nature , vol.519 , pp. 486-490
    • Spitale, R.C.1    Flynn, R.A.2    Zhang, Q.C.3    Crisalli, P.4    Lee, B.5
  • 10
    • 84925799191 scopus 로고    scopus 로고
    • hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1
    • Sugimoto Y, Vigilante A, Darbo E, Zirra A, Militti C, et al. (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519: 491–494. doi: 10.1038/nature14280 25799984
    • (2015) Nature , vol.519 , pp. 491-494
    • Sugimoto, Y.1    Vigilante, A.2    Darbo, E.3    Zirra, A.4    Militti, C.5
  • 11
    • 84893358533 scopus 로고    scopus 로고
    • Landscape and variation of RNA secondary structure across the human transcriptome
    • Wan Y, Qu K, Zhang QC, Flynn RA, Manor O, et al. (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505: 706–709. doi: 10.1038/nature12946 24476892
    • (2014) Nature , vol.505 , pp. 706-709
    • Wan, Y.1    Qu, K.2    Zhang, Q.C.3    Flynn, R.A.4    Manor, O.5
  • 12
    • 84925301356 scopus 로고    scopus 로고
    • The RNA structurome: transcriptome-wide structure probing with next-generation sequencing
    • Kwok CK, Tang Y, Assmann SM, Bevilacqua PC, (2015) The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem Sci 40: 221–232. doi: 10.1016/j.tibs.2015.02.005 25797096
    • (2015) Trends Biochem Sci , vol.40 , pp. 221-232
    • Kwok, C.K.1    Tang, Y.2    Assmann, S.M.3    Bevilacqua, P.C.4
  • 14
    • 11844292767 scopus 로고    scopus 로고
    • mRNA helicase activity of the ribosome
    • Takyar S, Hickerson RP, Noller HF, (2005) mRNA helicase activity of the ribosome. Cell 120: 49–58. 15652481
    • (2005) Cell , vol.120 , pp. 49-58
    • Takyar, S.1    Hickerson, R.P.2    Noller, H.F.3
  • 15
    • 84928210758 scopus 로고    scopus 로고
    • RNA: Detailed probing of RNA structure in vivo
    • Burgess DJ, (2015) RNA: Detailed probing of RNA structure in vivo. Nature reviews Genetics 16: 255. doi: 10.1038/nrg3939 25854184
    • (2015) Nature reviews Genetics , vol.16 , pp. 255
    • Burgess, D.J.1
  • 16
    • 77649169870 scopus 로고    scopus 로고
    • mRNA secondary structures fold sequentially but exchange rapidly in vivo
    • Mahen EM, Watson PY, Cottrell JW, Fedor MJ, (2010) mRNA secondary structures fold sequentially but exchange rapidly in vivo. PLoS Biol 8: e1000307. doi: 10.1371/journal.pbio.1000307 20161716
    • (2010) PLoS Biol , vol.8 , pp. 1000307
    • Mahen, E.M.1    Watson, P.Y.2    Cottrell, J.W.3    Fedor, M.J.4
  • 17
    • 0037162469 scopus 로고    scopus 로고
    • Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays
    • Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN, (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci U S A 99: 9697–9702. 12119387
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 9697-9702
    • Bernstein, J.A.1    Khodursky, A.B.2    Lin, P.H.3    Lin-Chao, S.4    Cohen, S.N.5
  • 18
    • 85027939461 scopus 로고    scopus 로고
    • Dynamics of translation by single ribosomes through mRNA secondary structures
    • Chen C, Zhang H, Broitman SL, Reiche M, Farrell I, et al. (2013) Dynamics of translation by single ribosomes through mRNA secondary structures. Nat Struct Mol Biol 20: 582–588. doi: 10.1038/nsmb.2544 23542154
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 582-588
    • Chen, C.1    Zhang, H.2    Broitman, S.L.3    Reiche, M.4    Farrell, I.5
  • 19
    • 41149155366 scopus 로고    scopus 로고
    • Following translation by single ribosomes one codon at a time
    • Wen JD, Lancaster L, Hodges C, Zeri AC, Yoshimura SH, et al. (2008) Following translation by single ribosomes one codon at a time. Nature 452: 598–603. doi: 10.1038/nature06716 18327250
    • (2008) Nature , vol.452 , pp. 598-603
    • Wen, J.D.1    Lancaster, L.2    Hodges, C.3    Zeri, A.C.4    Yoshimura, S.H.5
  • 20
    • 62049083910 scopus 로고    scopus 로고
    • Transient ribosomal attenuation coordinates protein synthesis and co-translational folding
    • Zhang G, Hubalewska M, Ignatova Z, (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16: 274–280. doi: 10.1038/nsmb.1554 19198590
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 274-280
    • Zhang, G.1    Hubalewska, M.2    Ignatova, Z.3
  • 21
    • 84942284143 scopus 로고    scopus 로고
    • Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate
    • Gorochowski TE, Ignatova Z, Bovenberg RA, Roubos JA, (2015) Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate. Nucleic Acids Res 43: 3022–3032. doi: 10.1093/nar/gkv199 25765653
    • (2015) Nucleic Acids Res , vol.43 , pp. 3022-3032
    • Gorochowski, T.E.1    Ignatova, Z.2    Bovenberg, R.A.3    Roubos, J.A.4
  • 22
    • 0025941139 scopus 로고
    • The selection-mutation-drift theory of synonymous codon usage
    • Bulmer M, (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129: 897–907. 1752426
    • (1991) Genetics , vol.129 , pp. 897-907
    • Bulmer, M.1
  • 23
    • 84921690520 scopus 로고    scopus 로고
    • Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation
    • Pop C, Rouskin S, Ingolia NT, Han L, Phizicky EM, et al. (2014) Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol Syst Biol 10: 770. doi: 10.15252/msb.20145524 25538139
    • (2014) Mol Syst Biol , vol.10 , pp. 770
    • Pop, C.1    Rouskin, S.2    Ingolia, N.T.3    Han, L.4    Phizicky, E.M.5
  • 24
    • 84879654928 scopus 로고    scopus 로고
    • Efficient translation initiation dictates codon usage at gene start
    • Bentele K, Saffert P, Rauscher R, Ignatova Z, Bluthgen N, (2013) Efficient translation initiation dictates codon usage at gene start. Mol Syst Biol 9: 675. doi: 10.1038/msb.2013.32 23774758
    • (2013) Mol Syst Biol , vol.9 , pp. 675
    • Bentele, K.1    Saffert, P.2    Rauscher, R.3    Ignatova, Z.4    Bluthgen, N.5
  • 25
    • 84886302057 scopus 로고    scopus 로고
    • Causes and effects of N-terminal codon bias in bacterial genes
    • Goodman DB, Church GM, Kosuri S, (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342: 475–479. doi: 10.1126/science.1241934 24072823
    • (2013) Science , vol.342 , pp. 475-479
    • Goodman, D.B.1    Church, G.M.2    Kosuri, S.3
  • 26
    • 62549134121 scopus 로고    scopus 로고
    • Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling
    • Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS, (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324: 218–223. doi: 10.1126/science.1168978 19213877
    • (2009) Science , vol.324 , pp. 218-223
    • Ingolia, N.T.1    Ghaemmaghami, S.2    Newman, J.R.3    Weissman, J.S.4
  • 27
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B, (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628. doi: 10.1038/nmeth.1226 18516045
    • (2008) Nat Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1    Williams, B.A.2    McCue, K.3    Schaeffer, L.4    Wold, B.5
  • 28
    • 0026559344 scopus 로고
    • Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site
    • Ehretsmann CP, Carpousis AJ, Krisch HM, (1992) Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev 6: 149–159. 1730408
    • (1992) Genes Dev , vol.6 , pp. 149-159
    • Ehretsmann, C.P.1    Carpousis, A.J.2    Krisch, H.M.3
  • 29
    • 0028341449 scopus 로고
    • A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage
    • McDowall KJ, Lin-Chao S, Cohen SN, (1994) A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J Biol Chem 269: 10790–10796. 7511606
    • (1994) J Biol Chem , vol.269 , pp. 10790-10796
    • McDowall, K.J.1    Lin-Chao, S.2    Cohen, S.N.3
  • 30
    • 0142240435 scopus 로고    scopus 로고
    • Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs
    • Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Blasi U, (2003) Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9: 1308–1314. 14561880
    • (2003) RNA , vol.9 , pp. 1308-1314
    • Moll, I.1    Afonyushkin, T.2    Vytvytska, O.3    Kaberdin, V.R.4    Blasi, U.5
  • 31
    • 84861121932 scopus 로고    scopus 로고
    • Global analysis of RNA secondary structure in two metazoans
    • Li F, Zheng Q, Ryvkin P, Dragomir I, Desai Y, et al. (2012) Global analysis of RNA secondary structure in two metazoans. Cell Rep 1: 69–82. doi: 10.1016/j.celrep.2011.10.002 22832108
    • (2012) Cell Rep , vol.1 , pp. 69-82
    • Li, F.1    Zheng, Q.2    Ryvkin, P.3    Dragomir, I.4    Desai, Y.5
  • 32
    • 84924584607 scopus 로고    scopus 로고
    • Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome
    • Incarnato D, Neri F, Anselmi F, Oliviero S, (2014) Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol 15: 491. 25323333
    • (2014) Genome Biol , vol.15 , pp. 491
    • Incarnato, D.1    Neri, F.2    Anselmi, F.3    Oliviero, S.4
  • 33
    • 33646838978 scopus 로고    scopus 로고
    • A periodic pattern of mRNA secondary structure created by the genetic code
    • Shabalina SA, Ogurtsov AY, Spiridonov NA, (2006) A periodic pattern of mRNA secondary structure created by the genetic code. Nucleic Acids Res 34: 2428–2437. 16682450
    • (2006) Nucleic Acids Res , vol.34 , pp. 2428-2437
    • Shabalina, S.A.1    Ogurtsov, A.Y.2    Spiridonov, N.A.3
  • 34
    • 33749125440 scopus 로고    scopus 로고
    • DEAD-box RNA helicases in Escherichia coli
    • Iost I, Dreyfus M, (2006) DEAD-box RNA helicases in Escherichia coli. Nucleic Acids Res 34: 4189–4197. 16935881
    • (2006) Nucleic Acids Res , vol.34 , pp. 4189-4197
    • Iost, I.1    Dreyfus, M.2
  • 35
    • 78751667727 scopus 로고    scopus 로고
    • Requirement of the CsdA DEAD-box helicase for low temperature riboregulation of rpoS mRNA
    • Resch A, Vecerek B, Palavra K, Blasi U, (2010) Requirement of the CsdA DEAD-box helicase for low temperature riboregulation of rpoS mRNA. RNA Biol 7: 796–802. 21045550
    • (2010) RNA Biol , vol.7 , pp. 796-802
    • Resch, A.1    Vecerek, B.2    Palavra, K.3    Blasi, U.4
  • 36
    • 84901634173 scopus 로고    scopus 로고
    • Global effects of the DEAD-box RNA helicase DeaD (CsdA) on gene expression over a broad range of temperatures
    • Vakulskas CA, Pannuri A, Cortes-Selva D, Zere TR, Ahmer BM, et al. (2014) Global effects of the DEAD-box RNA helicase DeaD (CsdA) on gene expression over a broad range of temperatures. Mol Microbiol 92: 945–958. doi: 10.1111/mmi.12606 24708042
    • (2014) Mol Microbiol , vol.92 , pp. 945-958
    • Vakulskas, C.A.1    Pannuri, A.2    Cortes-Selva, D.3    Zere, T.R.4    Ahmer, B.M.5
  • 37
    • 84925998694 scopus 로고    scopus 로고
    • mRNA-programmed translation pauses in the targeting of E. coli membrane proteins
    • Fluman N, Navon S, Bibi E, Pilpel Y, (2014) mRNA-programmed translation pauses in the targeting of E. coli membrane proteins. Elife 3.
    • (2014) Elife , vol.3
    • Fluman, N.1    Navon, S.2    Bibi, E.3    Pilpel, Y.4
  • 38
    • 1542358892 scopus 로고    scopus 로고
    • Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
    • Woolhead CA, McCormick PJ, Johnson AE, (2004) Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116: 725–736. 15006354
    • (2004) Cell , vol.116 , pp. 725-736
    • Woolhead, C.A.1    McCormick, P.J.2    Johnson, A.E.3
  • 39
    • 0031280034 scopus 로고    scopus 로고
    • Controlling messenger RNA stability in bacteria: strategies for engineering gene expression
    • Carrier TA, Keasling JD, (1997) Controlling messenger RNA stability in bacteria: strategies for engineering gene expression. Biotechnol Prog 13: 699–708. 9413129
    • (1997) Biotechnol Prog , vol.13 , pp. 699-708
    • Carrier, T.A.1    Keasling, J.D.2
  • 40
    • 84871321022 scopus 로고    scopus 로고
    • RNase E: at the interface of bacterial RNA processing and decay
    • Mackie GA, (2013) RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 11: 45–57. doi: 10.1038/nrmicro2930 23241849
    • (2013) Nat Rev Microbiol , vol.11 , pp. 45-57
    • Mackie, G.A.1
  • 41
    • 84920786962 scopus 로고    scopus 로고
    • Direct entry by RNase E is a major pathway for the degradation and processing of RNA in Escherichia coli
    • Clarke JE, Kime L, Romero AD, McDowall KJ, (2015) Direct entry by RNase E is a major pathway for the degradation and processing of RNA in Escherichia coli. Nucleic Acids Res 42: 11733–11751.
    • (2015) Nucleic Acids Res , vol.42 , pp. 11733-11751
    • Clarke, J.E.1    Kime, L.2    Romero, A.D.3    McDowall, K.J.4
  • 42
    • 0036786891 scopus 로고    scopus 로고
    • Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures
    • Ma J, Campbell A, Karlin S, (2002) Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 184: 5733–5745. 12270832
    • (2002) J Bacteriol , vol.184 , pp. 5733-5745
    • Ma, J.1    Campbell, A.2    Karlin, S.3
  • 43
    • 0021760395 scopus 로고
    • The influence of messenger RNA secondary structure on expression of an immunoglobulin heavy chain in Escherichia coli
    • Wood CR, Boss MA, Patel TP, Emtage JS, (1984) The influence of messenger RNA secondary structure on expression of an immunoglobulin heavy chain in Escherichia coli. Nucleic Acids Res 12: 3937–3950. 6328446
    • (1984) Nucleic Acids Res , vol.12 , pp. 3937-3950
    • Wood, C.R.1    Boss, M.A.2    Patel, T.P.3    Emtage, J.S.4
  • 44
    • 84871766345 scopus 로고    scopus 로고
    • Comparison of mRNA features affecting translation initiation and reinitiation
    • Osterman IA, Evfratov SA, Sergiev PV, Dontsova OA, (2013) Comparison of mRNA features affecting translation initiation and reinitiation. Nucleic Acids Res 41: 474–486. doi: 10.1093/nar/gks989 23093605
    • (2013) Nucleic Acids Res , vol.41 , pp. 474-486
    • Osterman, I.A.1    Evfratov, S.A.2    Sergiev, P.V.3    Dontsova, O.A.4
  • 45
    • 0026532777 scopus 로고
    • Translation initiation in Escherichia coli: sequences within the ribosome-binding site
    • Ringquist S, Shinedling S, Barrick D, Green L, Binkley J, et al. (1992) Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol 6: 1219–1229. 1375310
    • (1992) Mol Microbiol , vol.6 , pp. 1219-1229
    • Ringquist, S.1    Shinedling, S.2    Barrick, D.3    Green, L.4    Binkley, J.5
  • 46
    • 33645965566 scopus 로고    scopus 로고
    • Unfolding of mRNA secondary structure by the bacterial translation initiation complex
    • Studer SM, Joseph S, (2006) Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol Cell 22: 105–115. 16600874
    • (2006) Mol Cell , vol.22 , pp. 105-115
    • Studer, S.M.1    Joseph, S.2
  • 47
    • 0042166100 scopus 로고    scopus 로고
    • Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA
    • de Smit MH, van Duin J, (2003) Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J Mol Biol 331: 737–743. 12909006
    • (2003) J Mol Biol , vol.331 , pp. 737-743
    • de Smit, M.H.1    van Duin, J.2
  • 48
    • 70349964350 scopus 로고    scopus 로고
    • Automated design of synthetic ribosome binding sites to control protein expression
    • Salis HM, Mirsky EA, Voigt CA, (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27: 946–950. doi: 10.1038/nbt.1568 19801975
    • (2009) Nat Biotechnol , vol.27 , pp. 946-950
    • Salis, H.M.1    Mirsky, E.A.2    Voigt, C.A.3
  • 49
    • 84892773271 scopus 로고    scopus 로고
    • Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation
    • Duval M, Korepanov A, Fuchsbauer O, Fechter P, Haller A, et al. (2013) Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation. PLoS Biol 11: e1001731. doi: 10.1371/journal.pbio.1001731 24339747
    • (2013) PLoS Biol , vol.11 , pp. 1001731
    • Duval, M.1    Korepanov, A.2    Fuchsbauer, O.3    Fechter, P.4    Haller, A.5
  • 50
    • 0035834062 scopus 로고    scopus 로고
    • Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA
    • Sengupta J, Agrawal RK, Frank J, (2001) Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc Natl Acad Sci U S A 98: 11991–11996. 11593008
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 11991-11996
    • Sengupta, J.1    Agrawal, R.K.2    Frank, J.3
  • 51
    • 0029153552 scopus 로고
    • The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae
    • Bonetti B, Fu L, Moon J, Bedwell DM, (1995) The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 251: 334–345. 7650736
    • (1995) J Mol Biol , vol.251 , pp. 334-345
    • Bonetti, B.1    Fu, L.2    Moon, J.3    Bedwell, D.M.4
  • 52
    • 0029923751 scopus 로고    scopus 로고
    • Structure of the C-terminal end of the nascent peptide influences translation termination
    • Bjornsson A, Mottagui-Tabar S, Isaksson LA, (1996) Structure of the C-terminal end of the nascent peptide influences translation termination. The EMBO journal 15: 1696–1704. 8612594
    • (1996) The EMBO journal , vol.15 , pp. 1696-1704
    • Bjornsson, A.1    Mottagui-Tabar, S.2    Isaksson, L.A.3
  • 53
    • 1342286071 scopus 로고    scopus 로고
    • The major 5' determinant in stop codon read-through involves two adjacent adenines
    • Tork S, Hatin I, Rousset JP, Fabret C, (2004) The major 5' determinant in stop codon read-through involves two adjacent adenines. Nucleic Acids Res 32: 415–421. 14736996
    • (2004) Nucleic Acids Res , vol.32 , pp. 415-421
    • Tork, S.1    Hatin, I.2    Rousset, J.P.3    Fabret, C.4
  • 54
    • 27144495430 scopus 로고    scopus 로고
    • Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover
    • Callaghan AJ, Marcaida MJ, Stead JA, McDowall KJ, Scott WG, et al. (2005) Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature 437: 1187–1191. 16237448
    • (2005) Nature , vol.437 , pp. 1187-1191
    • Callaghan, A.J.1    Marcaida, M.J.2    Stead, J.A.3    McDowall, K.J.4    Scott, W.G.5
  • 55
    • 48349130534 scopus 로고    scopus 로고
    • The crystal structure of the Escherichia coli RNase E apoprotein and a mechanism for RNA degradation
    • Koslover DJ, Callaghan AJ, Marcaida MJ, Garman EF, Martick M, et al. (2008) The crystal structure of the Escherichia coli RNase E apoprotein and a mechanism for RNA degradation. Structure 16: 1238–1244. doi: 10.1016/j.str.2008.04.017 18682225
    • (2008) Structure , vol.16 , pp. 1238-1244
    • Koslover, D.J.1    Callaghan, A.J.2    Marcaida, M.J.3    Garman, E.F.4    Martick, M.5
  • 56
    • 84876161665 scopus 로고    scopus 로고
    • A simple assay for the ribonuclease activity of ribonucleases in the presence of ethidium bromide
    • Tripathy DR, Dinda AK, Dasgupta S, (2013) A simple assay for the ribonuclease activity of ribonucleases in the presence of ethidium bromide. Anal Biochem 437: 126–129. doi: 10.1016/j.ab.2013.03.005 23499964
    • (2013) Anal Biochem , vol.437 , pp. 126-129
    • Tripathy, D.R.1    Dinda, A.K.2    Dasgupta, S.3
  • 58
    • 0015915047 scopus 로고
    • Movement of ribosomes over messenger RNA in polysomes of rel + and rel—Escherichia coli strains
    • Cozzone AJ, Stent GS, (1973) Movement of ribosomes over messenger RNA in polysomes of rel + and rel—Escherichia coli strains. J Mol Biol 76: 163–179. 4578097
    • (1973) J Mol Biol , vol.76 , pp. 163-179
    • Cozzone, A.J.1    Stent, G.S.2
  • 59
    • 77955644289 scopus 로고    scopus 로고
    • Mammalian microRNAs predominantly act to decrease target mRNA levels
    • Guo H, Ingolia NT, Weissman JS, Bartel DP, (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: 835–840. doi: 10.1038/nature09267 20703300
    • (2010) Nature , vol.466 , pp. 835-840
    • Guo, H.1    Ingolia, N.T.2    Weissman, J.S.3    Bartel, D.P.4
  • 60
    • 0037336121 scopus 로고    scopus 로고
    • Definition of the Escherichia coli MC4100 genome by use of a DNA array
    • Peters JE, Thate TE, Craig NL, (2003) Definition of the Escherichia coli MC4100 genome by use of a DNA array. J Bacteriol 185: 2017–2021. 12618467
    • (2003) J Bacteriol , vol.185 , pp. 2017-2021
    • Peters, J.E.1    Thate, T.E.2    Craig, N.L.3
  • 61
    • 84896748566 scopus 로고    scopus 로고
    • DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest
    • Zhang Y, Mooney RA, Grass JA, Sivaramakrishnan P, Herman C, et al. (2014) DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest. Mol Cell 53: 766–778. doi: 10.1016/j.molcel.2014.02.005 24606919
    • (2014) Mol Cell , vol.53 , pp. 766-778
    • Zhang, Y.1    Mooney, R.A.2    Grass, J.A.3    Sivaramakrishnan, P.4    Herman, C.5
  • 63
    • 84860231100 scopus 로고    scopus 로고
    • The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria
    • Li GW, Oh E, Weissman JS, (2012) The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484: 538–541. doi: 10.1038/nature10965 22456704
    • (2012) Nature , vol.484 , pp. 538-541
    • Li, G.W.1    Oh, E.2    Weissman, J.S.3
  • 64
    • 50649097486 scopus 로고    scopus 로고
    • The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA
    • Soper TJ, Woodson SA, (2008) The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA 14: 1907–1917. doi: 10.1261/rna.1110608 18658123
    • (2008) RNA , vol.14 , pp. 1907-1917
    • Soper, T.J.1    Woodson, S.A.2
  • 65
    • 0028928471 scopus 로고
    • Secondary structures of Escherichia coli antisense micF RNA, the 5'-end of the target ompF mRNA, and the RNA/RNA duplex
    • Schmidt M, Zheng P, Delihas N, (1995) Secondary structures of Escherichia coli antisense micF RNA, the 5'-end of the target ompF mRNA, and the RNA/RNA duplex. Biochemistry 34: 3621–3631. 7534474
    • (1995) Biochemistry , vol.34 , pp. 3621-3631
    • Schmidt, M.1    Zheng, P.2    Delihas, N.3
  • 66
    • 0018936473 scopus 로고
    • Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence
    • Woese CR, Magrum LJ, Gupta R, Siegel RB, Stahl DA, et al. (1980) Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res 8: 2275–2293. 6159576
    • (1980) Nucleic Acids Res , vol.8 , pp. 2275-2293
    • Woese, C.R.1    Magrum, L.J.2    Gupta, R.3    Siegel, R.B.4    Stahl, D.A.5
  • 67
    • 0036600570 scopus 로고    scopus 로고
    • The accuracy of ribosomal RNA comparative structure models
    • Gutell RR, Lee JC, Cannone JJ, (2002) The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol 12: 301–310. 12127448
    • (2002) Curr Opin Struct Biol , vol.12 , pp. 301-310
    • Gutell, R.R.1    Lee, J.C.2    Cannone, J.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.