-
1
-
-
23044442056
-
Two-dimensional atomic crystals
-
Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA, 2005, 102: 10451–10453
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 10451-10453
-
-
Novoselov, K.S.1
Jiang, D.2
Schedin, F.3
-
2
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
-
3
-
-
84859798281
-
Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics
-
Lee J, Tao L, Hao Y, et al. Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics. Appl Phys Lett 2012, 100: 152104–152107
-
(2012)
Appl Phys Lett
, vol.100
, pp. 152104-152107
-
-
Lee, J.1
Tao, L.2
Hao, Y.3
-
4
-
-
33947176113
-
Room-temperature quantum hall effect in graphene
-
Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene. Science, 2007, 15: 1379
-
(2007)
Science
, vol.15
, pp. 1379
-
-
Novoselov, K.S.1
Jiang, Z.2
Zhang, Y.3
-
5
-
-
27744534165
-
Two-dimensional gas of massless Dirac fermions in grapheme
-
Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in grapheme. Nature, 2005, 438: 197–200
-
(2005)
Nature
, vol.438
, pp. 197-200
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
-
6
-
-
43049170468
-
Ultrahigh electron mobility in suspended graphene
-
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146: 351–355
-
(2008)
Solid State Commun
, vol.146
, pp. 351-355
-
-
Bolotin, K.I.1
Sikes, K.J.2
Jiang, Z.3
-
7
-
-
84924854984
-
The role of graphene for electrochemical energy storage
-
Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage. Nat Mater, 2015, 14: 271–279
-
(2015)
Nat Mater
, vol.14
, pp. 271-279
-
-
Raccichini, R.1
Varzi, A.2
Passerini, S.3
-
8
-
-
84930333065
-
Two-dimensional transition metal dichalcogenide nanosheet-based composites
-
Tan C, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev, 2015, 44: 2713–2731
-
(2015)
Chem Soc Rev
, vol.44
, pp. 2713-2731
-
-
Tan, C.1
Zhang, H.2
-
9
-
-
84925624336
-
Hybrid energy storage: the merging of battery and supercapacitor chemistries
-
Dubal D P, Ayyad O, Ruiz V, et al. Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev, 2015, 44: 1777–1790
-
(2015)
Chem Soc Rev
, vol.44
, pp. 1777-1790
-
-
Dubal, D.P.1
Ayyad, O.2
Ruiz, V.3
-
10
-
-
84880926651
-
An electrochemical route to quantitative oxidation of graphene frameworks with controllable C/O ratios and added pseudocapacitances
-
Liu F, Xue D. An electrochemical route to quantitative oxidation of graphene frameworks with controllable C/O ratios and added pseudocapacitances. Chem Eur J, 2013, 19: 10716–10722
-
(2013)
Chem Eur J
, vol.19
, pp. 10716-10722
-
-
Liu, F.1
Xue, D.2
-
11
-
-
84904976169
-
Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper
-
Chen K, Liu F, Song S, et al. Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper. CrystEngComm, 2014, 16: 7771–7776
-
(2014)
CrystEngComm
, vol.16
, pp. 7771-7776
-
-
Chen, K.1
Liu, F.2
Song, S.3
-
12
-
-
84863115760
-
Folded structured graphene paper for high performance electrode materials
-
Liu F, Song S, Xue D, et al. Folded structured graphene paper for high performance electrode materials. Adv Mater, 2012, 24: 1089–1094
-
(2012)
Adv Mater
, vol.24
, pp. 1089-1094
-
-
Liu, F.1
Song, S.2
Xue, D.3
-
13
-
-
84916897326
-
Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6
-
Chen K, Liu F, Xue D, et al. Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6. Nanoscale, 2015, 7: 432–439
-
(2015)
Nanoscale
, vol.7
, pp. 432-439
-
-
Chen, K.1
Liu, F.2
Xue, D.3
-
14
-
-
84907738836
-
Preparation of colloidal graphene in quantity by electrochemical exfoliation
-
Chen K, Xue D. Preparation of colloidal graphene in quantity by electrochemical exfoliation. J Colloid Interface Sci, 2014, 436: 41–46
-
(2014)
J Colloid Interface Sci
, vol.436
, pp. 41-46
-
-
Chen, K.1
Xue, D.2
-
15
-
-
84918783458
-
2-graphene nanocomposites by ripening of amorphous MnO2 in mild conditions
-
2-graphene nanocomposites by ripening of amorphous MnO2 in mild conditions. Graphene, 2013, 1: 58–64
-
(2013)
Graphene
, vol.1
, pp. 58-64
-
-
Liu, F.1
Zhu, J.2
Xue, D.3
-
16
-
-
84920405493
-
Advanced graphene nanomaterials for electrochemical energy storage
-
Liu F, Xue D. Advanced graphene nanomaterials for electrochemical energy storage. Mater Res Innovations, 2015, 19: 7–19
-
(2015)
Mater Res Innovations
, vol.19
, pp. 7-19
-
-
Liu, F.1
Xue, D.2
-
18
-
-
84929162231
-
In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO2
-
Chen K, Xue D. In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO2. J Colloid Interface Sci, 2015, 446: 77–83
-
(2015)
J Colloid Interface Sci
, vol.446
, pp. 77-83
-
-
Chen, K.1
Xue, D.2
-
19
-
-
67049114637
-
Chemical methods for the production of graphenes
-
Park S, Ruoff R S. Chemical methods for the production of graphenes. Nat Nanotechnol, 2009, 4: 217–24
-
(2009)
Nat Nanotechnol
, vol.4
, pp. 217-224
-
-
Park, S.1
Ruoff, R.S.2
-
20
-
-
79958156531
-
Graphene based materials: Past, present and future
-
Singh V V, Joung D, Zhai L, et al. Graphene based materials: Past, present and future. Prog Mater Sci, 2011, 56: 1178–271
-
(2011)
Prog Mater Sci
, vol.56
, pp. 1178-1271
-
-
Singh, V.V.1
Joung, D.2
Zhai, L.3
-
21
-
-
75649121098
-
Honeycomb carbon: a review of graphene
-
Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene. Chem Rev, 2010, 110: 132–145
-
(2010)
Chem Rev
, vol.110
, pp. 132-145
-
-
Allen, M.J.1
Tung, V.C.2
Kaner, R.B.3
-
22
-
-
84893481474
-
Epitaxial graphene on SiC{0001}: advances and perspectives
-
Norimatsu W, Kusunoki M. Epitaxial graphene on SiC{0001}: advances and perspectives. Phys Chem Chem Phys, 2014, 16: 3501–3511
-
(2014)
Phys Chem Chem Phys
, vol.16
, pp. 3501-3511
-
-
Norimatsu, W.1
Kusunoki, M.2
-
23
-
-
84883596929
-
Review of chemical vapor deposition of graphene and related applications
-
Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications. Acc Chem Res, 2013, 46: 2329–2339
-
(2013)
Acc Chem Res
, vol.46
, pp. 2329-2339
-
-
Zhang, Y.1
Zhang, L.2
Zhou, C.3
-
24
-
-
58149234825
-
Gram-scale production of graphene based on solvothermal synthesis and sonication
-
Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol, 2009, 4: 30–33
-
(2009)
Nat Nanotechnol
, vol.4
, pp. 30-33
-
-
Choucair, M.1
Thordarson, P.2
Stride, J.A.3
-
25
-
-
84870024876
-
Methods of graphite exfoliation
-
Cai M, Thorpe D, Adamson D H, et al. Methods of graphite exfoliation. J Mater Chem, 2012, 22: 24992–25002
-
(2012)
J Mater Chem
, vol.22
, pp. 24992-25002
-
-
Cai, M.1
Thorpe, D.2
Adamson, D.H.3
-
26
-
-
51349127170
-
High-yield production of graphene by liquid-phase exfoliation of graphite
-
Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 2008, 3: 563–568
-
(2008)
Nat Nanotechnol
, vol.3
, pp. 563-568
-
-
Hernandez, Y.1
Nicolosi, V.2
Lotya, M.3
-
27
-
-
34249742469
-
Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide
-
Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45: 1558–1565
-
(2007)
Carbon
, vol.45
, pp. 1558-1565
-
-
Stankovich, S.1
Dikin, D.A.2
Piner, R.D.3
-
28
-
-
84927750108
-
Commercialization of graphene- based technologies: A critical insight
-
Ciriminna R, Zhang N, Yang M Q, et al. Commercialization of graphene- based technologies: A critical insight. Chem Commun, 2015, 51: 7090–7095
-
(2015)
Chem Commun
, vol.51
, pp. 7090-7095
-
-
Ciriminna, R.1
Zhang, N.2
Yang, M.Q.3
-
29
-
-
84939865403
-
Structural design of graphene for use in electrochemical energy storage devices
-
Chen K, Song S, Liu F, et al. Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev, 2015, 44: 6230–6257
-
(2015)
Chem Soc Rev
, vol.44
, pp. 6230-6257
-
-
Chen, K.1
Song, S.2
Liu, F.3
-
30
-
-
84924854984
-
The role of graphene for electrochemical energy storage
-
Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage. Nat Mater, 2015, 14: 271–279
-
(2015)
Nat Mater
, vol.14
, pp. 271-279
-
-
Raccichini, R.1
Varzi, A.2
Passerini, S.3
-
31
-
-
84922660639
-
Scalable production of graphene via wet chemistry: progress and challenges
-
Zhong Y L, Tian Z, Simon G P, et al. Scalable production of graphene via wet chemistry: progress and challenges. Materials Today, 2015, 18: 73–78
-
(2015)
Materials Today
, vol.18
, pp. 73-78
-
-
Zhong, Y.L.1
Tian, Z.2
Simon, G.P.3
-
32
-
-
0014550745
-
Interstitial atom energies in graphite
-
Thrower P, Loader R T. Interstitial atom energies in graphite. Carbon, 1969, 7: 467–477
-
(1969)
Carbon
, vol.7
, pp. 467-477
-
-
Thrower, P.1
Loader, R.T.2
-
33
-
-
84885593922
-
Graphene-based carbon materials for electrochemical energy storage
-
Liu F, Lee C W, Im J S. Graphene-based carbon materials for electrochemical energy storage. J Nanomater, 2013, 2013: 106
-
(2013)
J Nanomater
, vol.2013
, pp. 106
-
-
Liu, F.1
Lee, C.W.2
Im, J.S.3
-
34
-
-
77949392996
-
The chemistry of graphene
-
Loh K P, Bao Q, Ang P K, et al. The chemistry of graphene. J Mater Chem, 2010, 20: 2277–2289
-
(2010)
J Mater Chem
, vol.20
, pp. 2277-2289
-
-
Loh, K.P.1
Bao, Q.2
Ang, P.K.3
-
35
-
-
80052130684
-
Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries
-
Hou J, Shao Y, Ellis M W, et al. Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys, 2011, 13: 15384–15402
-
(2011)
Phys Chem Chem Phys
, vol.13
, pp. 15384-15402
-
-
Hou, J.1
Shao, Y.2
Ellis, M.W.3
-
36
-
-
33746344730
-
Graphene-based composite materials
-
Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442: 282–286
-
(2006)
Nature
, vol.442
, pp. 282-286
-
-
Stankovich, S.1
Dikin, D.A.2
Dommett, G.H.B.3
-
37
-
-
77949880674
-
The chemistry of graphene oxide
-
Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide. Chem Soc Rev, 2010, 39: 228–240
-
(2010)
Chem Soc Rev
, vol.39
, pp. 228-240
-
-
Dreyer, D.R.1
Park, S.2
Bielawski, C.W.3
-
38
-
-
84904552007
-
Chemistry with graphene and graphene oxidechallenges for synthetic chemists
-
Eigler S, Hirsch A. Chemistry with graphene and graphene oxidechallenges for synthetic chemists. Angew Chem Int Ed, 2014, 53: 7720–7738
-
(2014)
Angew Chem Int Ed
, vol.53
, pp. 7720-7738
-
-
Eigler, S.1
Hirsch, A.2
-
39
-
-
84927922326
-
How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite
-
Abdelkader A M, Cooper A J, Dryfe R A W, et al. How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 2015, 7: 6944–6956
-
(2015)
Nanoscale
, vol.7
, pp. 6944-6956
-
-
Abdelkader, A.M.1
Cooper, A.J.2
Dryfe, R.A.W.3
-
40
-
-
84910624581
-
Novel eco-friendly synthesis of graphene directly from graphite using 2,2,6,6-tetramethylpiperidine 1-oxyl and study of its electrochemical properties
-
Subramanya B, Krishna Bhat D. Novel eco-friendly synthesis of graphene directly from graphite using 2,2,6,6-tetramethylpiperidine 1-oxyl and study of its electrochemical properties. J Power Sources, 2015, 275: 90–98
-
(2015)
J Power Sources
, vol.275
, pp. 90-98
-
-
Subramanya, B.K.1
Bhat, D.2
-
41
-
-
84922571830
-
3-X/graphene composite as a high-performance Li-ion battery anode
-
3-X/graphene composite as a high-performance Li-ion battery anode. Appl Surf Sci, 2014, 316: 604–609
-
(2014)
Appl Surf Sci
, vol.316
, pp. 604-609
-
-
Liu, F.1
Kim, J.G.2
Lee, C.W.3
-
43
-
-
84922186968
-
Beyond graphene: materials chemistry toward high performance inorganic functional materials
-
Chen K, Song S, Xue D. Beyond graphene: materials chemistry toward high performance inorganic functional materials. J Mater Chem A, 2015, 3: 2441–2453
-
(2015)
J Mater Chem A
, vol.3
, pp. 2441-2453
-
-
Chen, K.1
Song, S.2
Xue, D.3
-
44
-
-
77950606228
-
High-concentration solvent exfoliation of graphene
-
Khan U, O’Neill A, Lotya M, et al. High-concentration solvent exfoliation of graphene. Small, 2010, 6: 864
-
(2010)
Small
, vol.6
, pp. 864
-
-
Khan, U.1
O’Neill, A.2
Lotya, M.3
-
45
-
-
84907210984
-
Scalable production of transition metal disulphide/graphite nanoflake composites for high-performance lithium storage
-
Duan Z Q, Sun Y C, Liu Y T, et al. Scalable production of transition metal disulphide/graphite nanoflake composites for high-performance lithium storage. RSC Adv, 2014, 4: 41543
-
(2014)
RSC Adv
, vol.4
, pp. 41543
-
-
Duan, Z.Q.1
Sun, Y.C.2
Liu, Y.T.3
-
46
-
-
77749340581
-
Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery
-
Hernandez Y, Lotya M, Rickard D, et al. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 2010, 26: 3208
-
(2010)
Langmuir
, vol.26
, pp. 3208
-
-
Hernandez, Y.1
Lotya, M.2
Rickard, D.3
-
47
-
-
85027948800
-
4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage
-
4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv Funct Mater, 2015, 25: 3341–3350
-
(2015)
Adv Funct Mater
, vol.25
, pp. 3341-3350
-
-
Pan, L.1
Zhu, X.D.2
Xie, X.M.3
-
48
-
-
84907905008
-
A surfactant-free water-processable allcarbon composite and its application to supercapacitor
-
Du W, Qi S, Zhou B, et al. A surfactant-free water-processable allcarbon composite and its application to supercapacitor. Electrochim Acta, 2014, 146: 353–358
-
(2014)
Electrochim Acta
, vol.146
, pp. 353-358
-
-
Du, W.1
Qi, S.2
Zhou, B.3
-
49
-
-
84929298936
-
Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor
-
Chen I P, Chen Y S, Kao N J, et al. Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor. Carbon, 2015, 90: 16–24
-
(2015)
Carbon
, vol.90
, pp. 16-24
-
-
Chen, I.P.1
Chen, Y.S.2
Kao, N.J.3
-
50
-
-
84929379717
-
Reverse-micelle-induced exfoliation of graphite into graphene nanosheets with assistance of supercritical CO2
-
Xu S, Xu Q, Wang N, et al. Reverse-micelle-induced exfoliation of graphite into graphene nanosheets with assistance of supercritical CO2. Chem Mater, 2015, 27: 3262–3272
-
(2015)
Chem Mater
, vol.27
, pp. 3262-3272
-
-
Xu, S.1
Xu, Q.2
Wang, N.3
-
51
-
-
77954594759
-
Preparation of graphene by exfoliation of graphite using wet ball milling
-
Zhao W, Fang M, Wu F, et al. Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem, 2010, 20, 5817–5819
-
(2010)
J Mater Chem
, vol.20
, pp. 5817-5819
-
-
Zhao, W.1
Fang, M.2
Wu, F.3
-
52
-
-
84859620458
-
Edge-carboxylated graphene nanosheets via ball milling
-
Jeon I Y, Shin Y R, Sohn G J, et al. Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci USA, 2012, 109: 5588–5593
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 5588-5593
-
-
Jeon, I.Y.1
Shin, Y.R.2
Sohn, G.J.3
-
53
-
-
84865752692
-
Continuous mechanical exfoliation of graphene sheets via three-roll mill
-
Chen J, Duan M, Chen G. Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem, 2012, 22: 19625–19628
-
(2012)
J Mater Chem
, vol.22
, pp. 19625-19628
-
-
Chen, J.1
Duan, M.2
Chen, G.3
-
54
-
-
84930615181
-
Graphene nanoplatelets with selectively functionalized edges as electrode material for electrochemical energy storage
-
Bhattacharjya D, Jeon I Y, Park H Y, et al. Graphene nanoplatelets with selectively functionalized edges as electrode material for electrochemical energy storage. Langmuir, 2015, 31: 5676–5683
-
(2015)
Langmuir
, vol.31
, pp. 5676-5683
-
-
Bhattacharjya, D.1
Jeon, I.Y.2
Park, H.Y.3
-
55
-
-
84872872646
-
Electrochemical approaches to the production of graphene flakes and their potential applications
-
Low C T J, Walsh F C, Chakrabarti M H, et al. Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon, 2013, 54: 1–21
-
(2013)
Carbon
, vol.54
, pp. 1-21
-
-
Low, C.T.J.1
Walsh, F.C.2
Chakrabarti, M.H.3
-
56
-
-
84899581841
-
Exfoliation of graphite into graphene in aqueous solutions of inorganic salts
-
Parvez K, Wu Z S, Li R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc, 2014, 136, 6083–6091
-
(2014)
J Am Chem Soc
, vol.136
, pp. 6083-6091
-
-
Parvez, K.1
Wu, Z.S.2
Li, R.3
-
57
-
-
84876583278
-
Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics
-
Parvez K, Li R, Puniredd S R, et al. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano, 2013, 7: 3598–3606
-
(2013)
ACS Nano
, vol.7
, pp. 3598-3606
-
-
Parvez, K.1
Li, R.2
Puniredd, S.R.3
-
58
-
-
79958800834
-
High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte
-
Wang J, Manga K K, Bao Q, et al. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc, 2011, 133: 8888–8891
-
(2011)
J Am Chem Soc
, vol.133
, pp. 8888-8891
-
-
Wang, J.1
Manga, K.K.2
Bao, Q.3
-
59
-
-
45449092408
-
One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite
-
Liu N, Luo F, Wu H, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater, 2008, 18: 1518–1525
-
(2008)
Adv Funct Mater
, vol.18
, pp. 1518-1525
-
-
Liu, N.1
Luo, F.2
Wu, H.3
-
60
-
-
84877762566
-
Simultaneous electrochemical synthesis of few-layer graphene flakes on both electrodes in protic ionic liquids
-
Mao M, Wang M, Hu J, et al. Simultaneous electrochemical synthesis of few-layer graphene flakes on both electrodes in protic ionic liquids. Chem Commun, 2013, 49: 5301–5303
-
(2013)
Chem Commun
, vol.49
, pp. 5301-5303
-
-
Mao, M.1
Wang, M.2
Hu, J.3
-
61
-
-
69549120304
-
One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids
-
Lu J, Yang J X, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3: 2367–2375
-
(2009)
ACS Nano
, vol.3
, pp. 2367-2375
-
-
Lu, J.1
Yang, J.X.2
Wang, J.3
-
62
-
-
84855606947
-
Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices
-
Wei D, Grande L, Chundi V, et al. Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices. Chem Commun, 2012, 48: 1239–1241
-
(2012)
Chem Commun
, vol.48
, pp. 1239-1241
-
-
Wei, D.1
Grande, L.2
Chundi, V.3
-
63
-
-
84930192732
-
Graphene microsheets from natural microcrystalline graphite minerals: scalable synthesis and unusual energy storage
-
Wang J, Huang J, Yan R, et al. Graphene microsheets from natural microcrystalline graphite minerals: scalable synthesis and unusual energy storage. J Mater Chem A, 2015, 3: 3144–3150
-
(2015)
J Mater Chem A
, vol.3
, pp. 3144-3150
-
-
Wang, J.1
Huang, J.2
Yan, R.3
-
64
-
-
84923974580
-
Controlled porous structures of graphene aerogels and their effect on supercapacitor performance
-
Jung S M, Mafra D L, Lin C T, et al. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale, 2015, 7: 4386–4393
-
(2015)
Nanoscale
, vol.7
, pp. 4386-4393
-
-
Jung, S.M.1
Mafra, D.L.2
Lin, C.T.3
|