메뉴 건너뛰기




Volumn 58, Issue 11, 2015, Pages 1841-1850

Electrochemical energy storage applications of “pristine” graphene produced by non-oxidative routes

Author keywords

electrochemical; energy storage; exfoliation; graphene; pristine

Indexed keywords

ADDITIVES; ELECTROCHEMICAL ELECTRODES; ENERGY STORAGE; STORAGE (MATERIALS);

EID: 84946532327     PISSN: 16747321     EISSN: 18691900     Source Type: Journal    
DOI: 10.1007/s11431-015-5932-y     Document Type: Article
Times cited : (41)

References (64)
  • 2
    • 7444220645 scopus 로고    scopus 로고
    • Electric field effect in atomically thin carbon films
    • Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669
    • (2004) Science , vol.306 , pp. 666-669
    • Novoselov, K.S.1    Geim, A.K.2    Morozov, S.V.3
  • 3
    • 84859798281 scopus 로고    scopus 로고
    • Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics
    • Lee J, Tao L, Hao Y, et al. Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics. Appl Phys Lett 2012, 100: 152104–152107
    • (2012) Appl Phys Lett , vol.100 , pp. 152104-152107
    • Lee, J.1    Tao, L.2    Hao, Y.3
  • 4
    • 33947176113 scopus 로고    scopus 로고
    • Room-temperature quantum hall effect in graphene
    • Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene. Science, 2007, 15: 1379
    • (2007) Science , vol.15 , pp. 1379
    • Novoselov, K.S.1    Jiang, Z.2    Zhang, Y.3
  • 5
    • 27744534165 scopus 로고    scopus 로고
    • Two-dimensional gas of massless Dirac fermions in grapheme
    • Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in grapheme. Nature, 2005, 438: 197–200
    • (2005) Nature , vol.438 , pp. 197-200
    • Novoselov, K.S.1    Geim, A.K.2    Morozov, S.V.3
  • 6
    • 43049170468 scopus 로고    scopus 로고
    • Ultrahigh electron mobility in suspended graphene
    • Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146: 351–355
    • (2008) Solid State Commun , vol.146 , pp. 351-355
    • Bolotin, K.I.1    Sikes, K.J.2    Jiang, Z.3
  • 7
    • 84924854984 scopus 로고    scopus 로고
    • The role of graphene for electrochemical energy storage
    • Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage. Nat Mater, 2015, 14: 271–279
    • (2015) Nat Mater , vol.14 , pp. 271-279
    • Raccichini, R.1    Varzi, A.2    Passerini, S.3
  • 8
    • 84930333065 scopus 로고    scopus 로고
    • Two-dimensional transition metal dichalcogenide nanosheet-based composites
    • Tan C, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev, 2015, 44: 2713–2731
    • (2015) Chem Soc Rev , vol.44 , pp. 2713-2731
    • Tan, C.1    Zhang, H.2
  • 9
    • 84925624336 scopus 로고    scopus 로고
    • Hybrid energy storage: the merging of battery and supercapacitor chemistries
    • Dubal D P, Ayyad O, Ruiz V, et al. Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev, 2015, 44: 1777–1790
    • (2015) Chem Soc Rev , vol.44 , pp. 1777-1790
    • Dubal, D.P.1    Ayyad, O.2    Ruiz, V.3
  • 10
    • 84880926651 scopus 로고    scopus 로고
    • An electrochemical route to quantitative oxidation of graphene frameworks with controllable C/O ratios and added pseudocapacitances
    • Liu F, Xue D. An electrochemical route to quantitative oxidation of graphene frameworks with controllable C/O ratios and added pseudocapacitances. Chem Eur J, 2013, 19: 10716–10722
    • (2013) Chem Eur J , vol.19 , pp. 10716-10722
    • Liu, F.1    Xue, D.2
  • 11
    • 84904976169 scopus 로고    scopus 로고
    • Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper
    • Chen K, Liu F, Song S, et al. Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper. CrystEngComm, 2014, 16: 7771–7776
    • (2014) CrystEngComm , vol.16 , pp. 7771-7776
    • Chen, K.1    Liu, F.2    Song, S.3
  • 12
    • 84863115760 scopus 로고    scopus 로고
    • Folded structured graphene paper for high performance electrode materials
    • Liu F, Song S, Xue D, et al. Folded structured graphene paper for high performance electrode materials. Adv Mater, 2012, 24: 1089–1094
    • (2012) Adv Mater , vol.24 , pp. 1089-1094
    • Liu, F.1    Song, S.2    Xue, D.3
  • 13
    • 84916897326 scopus 로고    scopus 로고
    • Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6
    • Chen K, Liu F, Xue D, et al. Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6. Nanoscale, 2015, 7: 432–439
    • (2015) Nanoscale , vol.7 , pp. 432-439
    • Chen, K.1    Liu, F.2    Xue, D.3
  • 14
    • 84907738836 scopus 로고    scopus 로고
    • Preparation of colloidal graphene in quantity by electrochemical exfoliation
    • Chen K, Xue D. Preparation of colloidal graphene in quantity by electrochemical exfoliation. J Colloid Interface Sci, 2014, 436: 41–46
    • (2014) J Colloid Interface Sci , vol.436 , pp. 41-46
    • Chen, K.1    Xue, D.2
  • 15
    • 84918783458 scopus 로고    scopus 로고
    • 2-graphene nanocomposites by ripening of amorphous MnO2 in mild conditions
    • 2-graphene nanocomposites by ripening of amorphous MnO2 in mild conditions. Graphene, 2013, 1: 58–64
    • (2013) Graphene , vol.1 , pp. 58-64
    • Liu, F.1    Zhu, J.2    Xue, D.3
  • 16
    • 84920405493 scopus 로고    scopus 로고
    • Advanced graphene nanomaterials for electrochemical energy storage
    • Liu F, Xue D. Advanced graphene nanomaterials for electrochemical energy storage. Mater Res Innovations, 2015, 19: 7–19
    • (2015) Mater Res Innovations , vol.19 , pp. 7-19
    • Liu, F.1    Xue, D.2
  • 18
    • 84929162231 scopus 로고    scopus 로고
    • In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO2
    • Chen K, Xue D. In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO2. J Colloid Interface Sci, 2015, 446: 77–83
    • (2015) J Colloid Interface Sci , vol.446 , pp. 77-83
    • Chen, K.1    Xue, D.2
  • 19
    • 67049114637 scopus 로고    scopus 로고
    • Chemical methods for the production of graphenes
    • Park S, Ruoff R S. Chemical methods for the production of graphenes. Nat Nanotechnol, 2009, 4: 217–24
    • (2009) Nat Nanotechnol , vol.4 , pp. 217-224
    • Park, S.1    Ruoff, R.S.2
  • 20
    • 79958156531 scopus 로고    scopus 로고
    • Graphene based materials: Past, present and future
    • Singh V V, Joung D, Zhai L, et al. Graphene based materials: Past, present and future. Prog Mater Sci, 2011, 56: 1178–271
    • (2011) Prog Mater Sci , vol.56 , pp. 1178-1271
    • Singh, V.V.1    Joung, D.2    Zhai, L.3
  • 21
    • 75649121098 scopus 로고    scopus 로고
    • Honeycomb carbon: a review of graphene
    • Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene. Chem Rev, 2010, 110: 132–145
    • (2010) Chem Rev , vol.110 , pp. 132-145
    • Allen, M.J.1    Tung, V.C.2    Kaner, R.B.3
  • 22
    • 84893481474 scopus 로고    scopus 로고
    • Epitaxial graphene on SiC{0001}: advances and perspectives
    • Norimatsu W, Kusunoki M. Epitaxial graphene on SiC{0001}: advances and perspectives. Phys Chem Chem Phys, 2014, 16: 3501–3511
    • (2014) Phys Chem Chem Phys , vol.16 , pp. 3501-3511
    • Norimatsu, W.1    Kusunoki, M.2
  • 23
    • 84883596929 scopus 로고    scopus 로고
    • Review of chemical vapor deposition of graphene and related applications
    • Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications. Acc Chem Res, 2013, 46: 2329–2339
    • (2013) Acc Chem Res , vol.46 , pp. 2329-2339
    • Zhang, Y.1    Zhang, L.2    Zhou, C.3
  • 24
    • 58149234825 scopus 로고    scopus 로고
    • Gram-scale production of graphene based on solvothermal synthesis and sonication
    • Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol, 2009, 4: 30–33
    • (2009) Nat Nanotechnol , vol.4 , pp. 30-33
    • Choucair, M.1    Thordarson, P.2    Stride, J.A.3
  • 25
    • 84870024876 scopus 로고    scopus 로고
    • Methods of graphite exfoliation
    • Cai M, Thorpe D, Adamson D H, et al. Methods of graphite exfoliation. J Mater Chem, 2012, 22: 24992–25002
    • (2012) J Mater Chem , vol.22 , pp. 24992-25002
    • Cai, M.1    Thorpe, D.2    Adamson, D.H.3
  • 26
    • 51349127170 scopus 로고    scopus 로고
    • High-yield production of graphene by liquid-phase exfoliation of graphite
    • Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 2008, 3: 563–568
    • (2008) Nat Nanotechnol , vol.3 , pp. 563-568
    • Hernandez, Y.1    Nicolosi, V.2    Lotya, M.3
  • 27
    • 34249742469 scopus 로고    scopus 로고
    • Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide
    • Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45: 1558–1565
    • (2007) Carbon , vol.45 , pp. 1558-1565
    • Stankovich, S.1    Dikin, D.A.2    Piner, R.D.3
  • 28
    • 84927750108 scopus 로고    scopus 로고
    • Commercialization of graphene- based technologies: A critical insight
    • Ciriminna R, Zhang N, Yang M Q, et al. Commercialization of graphene- based technologies: A critical insight. Chem Commun, 2015, 51: 7090–7095
    • (2015) Chem Commun , vol.51 , pp. 7090-7095
    • Ciriminna, R.1    Zhang, N.2    Yang, M.Q.3
  • 29
    • 84939865403 scopus 로고    scopus 로고
    • Structural design of graphene for use in electrochemical energy storage devices
    • Chen K, Song S, Liu F, et al. Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev, 2015, 44: 6230–6257
    • (2015) Chem Soc Rev , vol.44 , pp. 6230-6257
    • Chen, K.1    Song, S.2    Liu, F.3
  • 30
    • 84924854984 scopus 로고    scopus 로고
    • The role of graphene for electrochemical energy storage
    • Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage. Nat Mater, 2015, 14: 271–279
    • (2015) Nat Mater , vol.14 , pp. 271-279
    • Raccichini, R.1    Varzi, A.2    Passerini, S.3
  • 31
    • 84922660639 scopus 로고    scopus 로고
    • Scalable production of graphene via wet chemistry: progress and challenges
    • Zhong Y L, Tian Z, Simon G P, et al. Scalable production of graphene via wet chemistry: progress and challenges. Materials Today, 2015, 18: 73–78
    • (2015) Materials Today , vol.18 , pp. 73-78
    • Zhong, Y.L.1    Tian, Z.2    Simon, G.P.3
  • 32
    • 0014550745 scopus 로고
    • Interstitial atom energies in graphite
    • Thrower P, Loader R T. Interstitial atom energies in graphite. Carbon, 1969, 7: 467–477
    • (1969) Carbon , vol.7 , pp. 467-477
    • Thrower, P.1    Loader, R.T.2
  • 33
    • 84885593922 scopus 로고    scopus 로고
    • Graphene-based carbon materials for electrochemical energy storage
    • Liu F, Lee C W, Im J S. Graphene-based carbon materials for electrochemical energy storage. J Nanomater, 2013, 2013: 106
    • (2013) J Nanomater , vol.2013 , pp. 106
    • Liu, F.1    Lee, C.W.2    Im, J.S.3
  • 34
    • 77949392996 scopus 로고    scopus 로고
    • The chemistry of graphene
    • Loh K P, Bao Q, Ang P K, et al. The chemistry of graphene. J Mater Chem, 2010, 20: 2277–2289
    • (2010) J Mater Chem , vol.20 , pp. 2277-2289
    • Loh, K.P.1    Bao, Q.2    Ang, P.K.3
  • 35
    • 80052130684 scopus 로고    scopus 로고
    • Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries
    • Hou J, Shao Y, Ellis M W, et al. Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys, 2011, 13: 15384–15402
    • (2011) Phys Chem Chem Phys , vol.13 , pp. 15384-15402
    • Hou, J.1    Shao, Y.2    Ellis, M.W.3
  • 36
    • 33746344730 scopus 로고    scopus 로고
    • Graphene-based composite materials
    • Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442: 282–286
    • (2006) Nature , vol.442 , pp. 282-286
    • Stankovich, S.1    Dikin, D.A.2    Dommett, G.H.B.3
  • 38
    • 84904552007 scopus 로고    scopus 로고
    • Chemistry with graphene and graphene oxidechallenges for synthetic chemists
    • Eigler S, Hirsch A. Chemistry with graphene and graphene oxidechallenges for synthetic chemists. Angew Chem Int Ed, 2014, 53: 7720–7738
    • (2014) Angew Chem Int Ed , vol.53 , pp. 7720-7738
    • Eigler, S.1    Hirsch, A.2
  • 39
    • 84927922326 scopus 로고    scopus 로고
    • How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite
    • Abdelkader A M, Cooper A J, Dryfe R A W, et al. How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 2015, 7: 6944–6956
    • (2015) Nanoscale , vol.7 , pp. 6944-6956
    • Abdelkader, A.M.1    Cooper, A.J.2    Dryfe, R.A.W.3
  • 40
    • 84910624581 scopus 로고    scopus 로고
    • Novel eco-friendly synthesis of graphene directly from graphite using 2,2,6,6-tetramethylpiperidine 1-oxyl and study of its electrochemical properties
    • Subramanya B, Krishna Bhat D. Novel eco-friendly synthesis of graphene directly from graphite using 2,2,6,6-tetramethylpiperidine 1-oxyl and study of its electrochemical properties. J Power Sources, 2015, 275: 90–98
    • (2015) J Power Sources , vol.275 , pp. 90-98
    • Subramanya, B.K.1    Bhat, D.2
  • 41
    • 84922571830 scopus 로고    scopus 로고
    • 3-X/graphene composite as a high-performance Li-ion battery anode
    • 3-X/graphene composite as a high-performance Li-ion battery anode. Appl Surf Sci, 2014, 316: 604–609
    • (2014) Appl Surf Sci , vol.316 , pp. 604-609
    • Liu, F.1    Kim, J.G.2    Lee, C.W.3
  • 43
    • 84922186968 scopus 로고    scopus 로고
    • Beyond graphene: materials chemistry toward high performance inorganic functional materials
    • Chen K, Song S, Xue D. Beyond graphene: materials chemistry toward high performance inorganic functional materials. J Mater Chem A, 2015, 3: 2441–2453
    • (2015) J Mater Chem A , vol.3 , pp. 2441-2453
    • Chen, K.1    Song, S.2    Xue, D.3
  • 44
    • 77950606228 scopus 로고    scopus 로고
    • High-concentration solvent exfoliation of graphene
    • Khan U, O’Neill A, Lotya M, et al. High-concentration solvent exfoliation of graphene. Small, 2010, 6: 864
    • (2010) Small , vol.6 , pp. 864
    • Khan, U.1    O’Neill, A.2    Lotya, M.3
  • 45
    • 84907210984 scopus 로고    scopus 로고
    • Scalable production of transition metal disulphide/graphite nanoflake composites for high-performance lithium storage
    • Duan Z Q, Sun Y C, Liu Y T, et al. Scalable production of transition metal disulphide/graphite nanoflake composites for high-performance lithium storage. RSC Adv, 2014, 4: 41543
    • (2014) RSC Adv , vol.4 , pp. 41543
    • Duan, Z.Q.1    Sun, Y.C.2    Liu, Y.T.3
  • 46
    • 77749340581 scopus 로고    scopus 로고
    • Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery
    • Hernandez Y, Lotya M, Rickard D, et al. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 2010, 26: 3208
    • (2010) Langmuir , vol.26 , pp. 3208
    • Hernandez, Y.1    Lotya, M.2    Rickard, D.3
  • 47
    • 85027948800 scopus 로고    scopus 로고
    • 4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage
    • 4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv Funct Mater, 2015, 25: 3341–3350
    • (2015) Adv Funct Mater , vol.25 , pp. 3341-3350
    • Pan, L.1    Zhu, X.D.2    Xie, X.M.3
  • 48
    • 84907905008 scopus 로고    scopus 로고
    • A surfactant-free water-processable allcarbon composite and its application to supercapacitor
    • Du W, Qi S, Zhou B, et al. A surfactant-free water-processable allcarbon composite and its application to supercapacitor. Electrochim Acta, 2014, 146: 353–358
    • (2014) Electrochim Acta , vol.146 , pp. 353-358
    • Du, W.1    Qi, S.2    Zhou, B.3
  • 49
    • 84929298936 scopus 로고    scopus 로고
    • Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor
    • Chen I P, Chen Y S, Kao N J, et al. Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor. Carbon, 2015, 90: 16–24
    • (2015) Carbon , vol.90 , pp. 16-24
    • Chen, I.P.1    Chen, Y.S.2    Kao, N.J.3
  • 50
    • 84929379717 scopus 로고    scopus 로고
    • Reverse-micelle-induced exfoliation of graphite into graphene nanosheets with assistance of supercritical CO2
    • Xu S, Xu Q, Wang N, et al. Reverse-micelle-induced exfoliation of graphite into graphene nanosheets with assistance of supercritical CO2. Chem Mater, 2015, 27: 3262–3272
    • (2015) Chem Mater , vol.27 , pp. 3262-3272
    • Xu, S.1    Xu, Q.2    Wang, N.3
  • 51
    • 77954594759 scopus 로고    scopus 로고
    • Preparation of graphene by exfoliation of graphite using wet ball milling
    • Zhao W, Fang M, Wu F, et al. Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem, 2010, 20, 5817–5819
    • (2010) J Mater Chem , vol.20 , pp. 5817-5819
    • Zhao, W.1    Fang, M.2    Wu, F.3
  • 52
    • 84859620458 scopus 로고    scopus 로고
    • Edge-carboxylated graphene nanosheets via ball milling
    • Jeon I Y, Shin Y R, Sohn G J, et al. Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci USA, 2012, 109: 5588–5593
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 5588-5593
    • Jeon, I.Y.1    Shin, Y.R.2    Sohn, G.J.3
  • 53
    • 84865752692 scopus 로고    scopus 로고
    • Continuous mechanical exfoliation of graphene sheets via three-roll mill
    • Chen J, Duan M, Chen G. Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem, 2012, 22: 19625–19628
    • (2012) J Mater Chem , vol.22 , pp. 19625-19628
    • Chen, J.1    Duan, M.2    Chen, G.3
  • 54
    • 84930615181 scopus 로고    scopus 로고
    • Graphene nanoplatelets with selectively functionalized edges as electrode material for electrochemical energy storage
    • Bhattacharjya D, Jeon I Y, Park H Y, et al. Graphene nanoplatelets with selectively functionalized edges as electrode material for electrochemical energy storage. Langmuir, 2015, 31: 5676–5683
    • (2015) Langmuir , vol.31 , pp. 5676-5683
    • Bhattacharjya, D.1    Jeon, I.Y.2    Park, H.Y.3
  • 55
    • 84872872646 scopus 로고    scopus 로고
    • Electrochemical approaches to the production of graphene flakes and their potential applications
    • Low C T J, Walsh F C, Chakrabarti M H, et al. Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon, 2013, 54: 1–21
    • (2013) Carbon , vol.54 , pp. 1-21
    • Low, C.T.J.1    Walsh, F.C.2    Chakrabarti, M.H.3
  • 56
    • 84899581841 scopus 로고    scopus 로고
    • Exfoliation of graphite into graphene in aqueous solutions of inorganic salts
    • Parvez K, Wu Z S, Li R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc, 2014, 136, 6083–6091
    • (2014) J Am Chem Soc , vol.136 , pp. 6083-6091
    • Parvez, K.1    Wu, Z.S.2    Li, R.3
  • 57
    • 84876583278 scopus 로고    scopus 로고
    • Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics
    • Parvez K, Li R, Puniredd S R, et al. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano, 2013, 7: 3598–3606
    • (2013) ACS Nano , vol.7 , pp. 3598-3606
    • Parvez, K.1    Li, R.2    Puniredd, S.R.3
  • 58
    • 79958800834 scopus 로고    scopus 로고
    • High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte
    • Wang J, Manga K K, Bao Q, et al. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc, 2011, 133: 8888–8891
    • (2011) J Am Chem Soc , vol.133 , pp. 8888-8891
    • Wang, J.1    Manga, K.K.2    Bao, Q.3
  • 59
    • 45449092408 scopus 로고    scopus 로고
    • One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite
    • Liu N, Luo F, Wu H, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater, 2008, 18: 1518–1525
    • (2008) Adv Funct Mater , vol.18 , pp. 1518-1525
    • Liu, N.1    Luo, F.2    Wu, H.3
  • 60
    • 84877762566 scopus 로고    scopus 로고
    • Simultaneous electrochemical synthesis of few-layer graphene flakes on both electrodes in protic ionic liquids
    • Mao M, Wang M, Hu J, et al. Simultaneous electrochemical synthesis of few-layer graphene flakes on both electrodes in protic ionic liquids. Chem Commun, 2013, 49: 5301–5303
    • (2013) Chem Commun , vol.49 , pp. 5301-5303
    • Mao, M.1    Wang, M.2    Hu, J.3
  • 61
    • 69549120304 scopus 로고    scopus 로고
    • One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids
    • Lu J, Yang J X, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3: 2367–2375
    • (2009) ACS Nano , vol.3 , pp. 2367-2375
    • Lu, J.1    Yang, J.X.2    Wang, J.3
  • 62
    • 84855606947 scopus 로고    scopus 로고
    • Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices
    • Wei D, Grande L, Chundi V, et al. Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices. Chem Commun, 2012, 48: 1239–1241
    • (2012) Chem Commun , vol.48 , pp. 1239-1241
    • Wei, D.1    Grande, L.2    Chundi, V.3
  • 63
    • 84930192732 scopus 로고    scopus 로고
    • Graphene microsheets from natural microcrystalline graphite minerals: scalable synthesis and unusual energy storage
    • Wang J, Huang J, Yan R, et al. Graphene microsheets from natural microcrystalline graphite minerals: scalable synthesis and unusual energy storage. J Mater Chem A, 2015, 3: 3144–3150
    • (2015) J Mater Chem A , vol.3 , pp. 3144-3150
    • Wang, J.1    Huang, J.2    Yan, R.3
  • 64
    • 84923974580 scopus 로고    scopus 로고
    • Controlled porous structures of graphene aerogels and their effect on supercapacitor performance
    • Jung S M, Mafra D L, Lin C T, et al. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale, 2015, 7: 4386–4393
    • (2015) Nanoscale , vol.7 , pp. 4386-4393
    • Jung, S.M.1    Mafra, D.L.2    Lin, C.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.