메뉴 건너뛰기




Volumn 28, Issue 15, 2014, Pages 5297-5317

Comparative Study of Artificial Neural Networks and Wavelet Artificial Neural Networks for Groundwater Depth Data Forecasting with Various Curve Fractal Dimensions

Author keywords

Artificial neural network; Fractal dimension; Groundwater depth; Mallat decomposition algorithm; Training algorithms; Wavelet artificial neural network

Indexed keywords

FORECASTING; FRACTAL DIMENSION; GROUNDWATER; GROUNDWATER RESOURCES; TIME SERIES; WAVELET DECOMPOSITION;

EID: 84918516098     PISSN: 09204741     EISSN: 15731650     Source Type: Journal    
DOI: 10.1007/s11269-014-0802-0     Document Type: Article
Times cited : (38)

References (44)
  • 1
    • 84927805881 scopus 로고    scopus 로고
    • Reservoir optimization in water resources: a review
    • Ahmad A, El-Shafie A et al (2014) Reservoir optimization in water resources: a review. Water Resour Manag 28(11):3391–3405
    • (2014) Water Resour Manag , vol.28 , Issue.11 , pp. 3391-3405
    • Ahmad, A.1    El-Shafie, A.2
  • 2
    • 84901052817 scopus 로고    scopus 로고
    • Predicting water level fluctuations in Lake Michigan-Huron using wavelet-expert system methods
    • Altunkaynak A (2014) Predicting water level fluctuations in Lake Michigan-Huron using wavelet-expert system methods. Water Resour Manag 28(8):2293–2314
    • (2014) Water Resour Manag , vol.28 , Issue.8 , pp. 2293-2314
    • Altunkaynak, A.1
  • 3
    • 79551472362 scopus 로고    scopus 로고
    • Artificial neural network model as a potential alternative for groundwater salinity forecasting
    • Banerjee P, Singh VS, Chatttopadhyay K, Chandra PC, Singh B (2011) Artificial neural network model as a potential alternative for groundwater salinity forecasting. J Hydrol 398(3–4):212–220
    • (2011) J Hydrol , vol.398 , Issue.3-4 , pp. 212-220
    • Banerjee, P.1    Singh, V.S.2    Chatttopadhyay, K.3    Chandra, P.C.4    Singh, B.5
  • 4
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks fundamentals, computing, design, and application
    • Basheer IA, Hajmeer M (2000) Artificial neural networks fundamentals, computing, design, and application. J Microbiol Methods 43:3–31
    • (2000) J Microbiol Methods , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 6
    • 0032045752 scopus 로고    scopus 로고
    • Measurements of fractal dimension by box-counting: a critical analysis of data scatter
    • Buczkowski PH, Cartilier L (1998) Measurements of fractal dimension by box-counting: a critical analysis of data scatter. Physica A 252(1998):23–24
    • (1998) Physica A , vol.252 , Issue.1998 , pp. 23-24
    • Buczkowski, P.H.1    Cartilier, L.2
  • 7
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B, Fanni A, See L, Sias G (2006) Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys Chem Earth Parts A/B/C 31(18):1164–1171
    • (2006) Phys Chem Earth Parts A/B/C , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 8
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in yangtze river
    • Chau KW, Wu CL, Li YS (2005) Comparison of several flood forecasting models in yangtze river. J Hydrol Eng 2005(10):485–491
    • (2005) J Hydrol Eng , vol.2005 , Issue.10 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 9
    • 33845428421 scopus 로고    scopus 로고
    • Intelligent manipulation and calibration of parameters for hydrological models
    • Chen W, Chau KW (2006) Intelligent manipulation and calibration of parameters for hydrological models. Int J Environ Pollut 28(3–4):432–447
    • (2006) Int J Environ Pollut , vol.28 , Issue.3-4 , pp. 432-447
    • Chen, W.1    Chau, K.W.2
  • 10
    • 84903539566 scopus 로고    scopus 로고
    • Application of neural networks and optimization model in conjunctive use of surface water and groundwater
    • Chen C-W, Wei C-C et al (2014) Application of neural networks and optimization model in conjunctive use of surface water and groundwater. Water Resour Manag 28(10):2813–2832
    • (2014) Water Resour Manag , vol.28 , Issue.10 , pp. 2813-2832
    • Chen, C.-W.1    Wei, C.-C.2
  • 11
    • 26844569500 scopus 로고    scopus 로고
    • Long-term prediction of discharges in Manwan hydropower using adaptive-network-based fuzzy inference systems models
    • Cheng CT, Chau KW, Sun JYG, Lin Y (2005) Long-term prediction of discharges in Manwan hydropower using adaptive-network-based fuzzy inference systems models. Lecture Notes in Computer Science. 2005(3612): 1152-1161
    • (2005) Lecture Notes in Computer Science , vol.2005 , Issue.3612 , pp. 1152-1161
    • Cheng, C.T.1    Chau, K.W.2    Sun, J.Y.G.3    Lin, Y.4
  • 12
    • 33845703865 scopus 로고    scopus 로고
    • Efficient nonlinear modeling of rainfall-runoff process using wavelet compression
    • Chou CM (2007) Efficient nonlinear modeling of rainfall-runoff process using wavelet compression. J Hydrol 332(3–4):442–455
    • (2007) J Hydrol , vol.332 , Issue.3-4 , pp. 442-455
    • Chou, C.M.1
  • 13
    • 0344984214 scopus 로고    scopus 로고
    • Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions
    • Coppola E, Szidarovszky F, Poulton M, Charles E (2003) Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions. J Hydrol Eng 8(6):348–360
    • (2003) J Hydrol Eng , vol.8 , Issue.6 , pp. 348-360
    • Coppola, E.1    Szidarovszky, F.2    Poulton, M.3    Charles, E.4
  • 14
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly P, Anctil F, Aravena R, Bobee B (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour Res 37(4):885–896
    • (2001) Water Resour Res , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobee, B.4
  • 15
    • 84927805879 scopus 로고    scopus 로고
    • Deriving hedging rules of multi-reservoir system by online evolving neural networks
    • Dariane A, Karami F (2014) Deriving hedging rules of multi-reservoir system by online evolving neural networks. Water Resour Manag 28(11):3651–3665
    • (2014) Water Resour Manag , vol.28 , Issue.11 , pp. 3651-3665
    • Dariane, A.1    Karami, F.2
  • 16
    • 37549038684 scopus 로고    scopus 로고
    • Neural networks to simulate regional ground water levels affected by human activities
    • Feng S, Kang S, Huo Z, Chen S, Mao X (2008) Neural networks to simulate regional ground water levels affected by human activities. Ground Water 46(1):80–90
    • (2008) Ground Water , vol.46 , Issue.1 , pp. 80-90
    • Feng, S.1    Kang, S.2    Huo, Z.3    Chen, S.4    Mao, X.5
  • 17
    • 0346906095 scopus 로고    scopus 로고
    • Advances in the implementation of the box-counting method of fractal dimension estimation
    • Foroutan-pour K, Dutilleul P, Smith DL (1999) Advances in the implementation of the box-counting method of fractal dimension estimation. Appl Math Comput 105:195–210
    • (1999) Appl Math Comput , vol.105 , pp. 195-210
    • Foroutan-pour, K.1    Dutilleul, P.2    Smith, D.L.3
  • 18
    • 84872943093 scopus 로고    scopus 로고
    • Application of artificial neural networks and particle swarm optimization for the management of groundwater resources
    • Gaur S, Ch S, Graillot D, Chahar BR, Kumar DN (2012) Application of artificial neural networks and particle swarm optimization for the management of groundwater resources. Water Resour Manag 27(3):927–941
    • (2012) Water Resour Manag , vol.27 , Issue.3 , pp. 927-941
    • Gaur, S.1    Ch, S.2    Graillot, D.3    Chahar, B.R.4    Kumar, D.N.5
  • 19
    • 84899975429 scopus 로고    scopus 로고
    • Modeling of sediment yield prediction using M5 model tree algorithm and wavelet regression
    • Goyal M (2014) Modeling of sediment yield prediction using M5 model tree algorithm and wavelet regression. Water Resour Manag 28(7):1991–2003
    • (2014) Water Resour Manag , vol.28 , Issue.7 , pp. 1991-2003
    • Goyal, M.1
  • 20
    • 84876427289 scopus 로고    scopus 로고
    • Estimating daily pan evaporation using different data-driven methods and lag-time patterns
    • Kim S, Shiri J, Kisi O, Singh VP (2013) Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water Resour Manag 27(7):2267–2286
    • (2013) Water Resour Manag , vol.27 , Issue.7 , pp. 2267-2286
    • Kim, S.1    Shiri, J.2    Kisi, O.3    Singh, V.P.4
  • 21
    • 84872933573 scopus 로고    scopus 로고
    • Application of ANN, fuzzy logic and decision tree algorithms for the development of reservoir operating rules
    • Kumar ARS, Goyal MK, Ojha CSP, Singh RD, Swamee PK, Nema RK (2012) Application of ANN, fuzzy logic and decision tree algorithms for the development of reservoir operating rules. Water Resour Manag 27(3):911–925
    • (2012) Water Resour Manag , vol.27 , Issue.3 , pp. 911-925
    • Kumar, A.R.S.1    Goyal, M.K.2    Ojha, C.S.P.3    Singh, R.D.4    Swamee, P.K.5    Nema, R.K.6
  • 22
    • 84901037108 scopus 로고    scopus 로고
    • Improving flood forecasting in a developing country: a comparative study of stepwise multiple linear regression and artificial neural network
    • Latt Z, Wittenberg H (2014) Improving flood forecasting in a developing country: a comparative study of stepwise multiple linear regression and artificial neural network. Water Resour Manag 28(8):2109–2128
    • (2014) Water Resour Manag , vol.28 , Issue.8 , pp. 2109-2128
    • Latt, Z.1    Wittenberg, H.2
  • 24
    • 26644440916 scopus 로고    scopus 로고
    • An active region model for capturing fractal flow patterns in unsaturated soils: model development
    • Liu HH, Zhang R, Bodvarsson GS (2005) An active region model for capturing fractal flow patterns in unsaturated soils: model development. J Contam Hydrol 80:18–30
    • (2005) J Contam Hydrol , vol.80 , pp. 18-30
    • Liu, H.H.1    Zhang, R.2    Bodvarsson, G.S.3
  • 25
    • 0031574174 scopus 로고    scopus 로고
    • Fractal analysis of flow of the river Warta
    • Maciej R, Kundzewicz ZW (1997) Fractal analysis of flow of the river Warta. J Hydrol 200:280–294
    • (1997) J Hydrol , vol.200 , pp. 280-294
    • Maciej, R.1    Kundzewicz, Z.W.2
  • 26
    • 0024904699 scopus 로고
    • Multifrequency channel decompositions of images and wavelet models
    • Mallat SG (1989) Multifrequency channel decompositions of images and wavelet models. Acoust Speech Signal Process IEEE Trans 37(12):2091–2110
    • (1989) Acoust Speech Signal Process IEEE Trans , vol.37 , Issue.12 , pp. 2091-2110
    • Mallat, S.G.1
  • 28
    • 0008201078 scopus 로고
    • Fractal geometry: what is it, and what does it do?
    • Tildesley D, Ball RC, (eds), Fractals in the Natural Sciences Princeton University Press, Princeton, NJ:
    • Mandelbrot BB (1989) Fractal geometry: what is it, and what does it do? In: Tildesley D, Ball RC (eds) FRS Fleischmann. Fractals in the Natural Sciences Princeton University Press, Princeton, NJ
    • (1989) FRS Fleischmann
    • Mandelbrot, B.B.1
  • 29
    • 6244232696 scopus 로고
    • Fractal character of fracture surfaces of metals
    • Mandelbrot BB, Dann E, Passoja J, Paulay A (1984) Fractal character of fracture surfaces of metals. Nature 308(19):721–722
    • (1984) Nature , vol.308 , Issue.19 , pp. 721-722
    • Mandelbrot, B.B.1    Dann, E.2    Passoja, J.3    Paulay, A.4
  • 30
    • 77953325250 scopus 로고    scopus 로고
    • Artificial neural network modeling for groundwater level forecasting in a River Island of Eastern India
    • Mohanty S, Jha MK, Kumar A, Sudheer KP (2010) Artificial neural network modeling for groundwater level forecasting in a River Island of Eastern India. Water Resour Manag 24(9):1845–1865
    • (2010) Water Resour Manag , vol.24 , Issue.9 , pp. 1845-1865
    • Mohanty, S.1    Jha, M.K.2    Kumar, A.3    Sudheer, K.P.4
  • 31
    • 84874285796 scopus 로고    scopus 로고
    • A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods
    • Moosavi V, Vafakhah M, Shirmohammadi B, Behnia N (2013) A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour Manag 27(5):1301–1321
    • (2013) Water Resour Manag , vol.27 , Issue.5 , pp. 1301-1321
    • Moosavi, V.1    Vafakhah, M.2    Shirmohammadi, B.3    Behnia, N.4
  • 32
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • Nayak PC, Rao YRS, Sudheer KP (2006) Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour Manag 20(1):77–90
    • (2006) Water Resour Manag , vol.20 , Issue.1 , pp. 77-90
    • Nayak, P.C.1    Rao, Y.R.S.2    Sudheer, K.P.3
  • 33
    • 82755182829 scopus 로고    scopus 로고
    • Neural network models for biological waste-gas treatment systems
    • Rene ER, Estefania Lopez M, Veiga MC, Kennes C (2011) Neural network models for biological waste-gas treatment systems. New Biotechnol 29(1):56–73
    • (2011) New Biotechnol , vol.29 , Issue.1 , pp. 56-73
    • Rene, E.R.1    Estefania Lopez, M.2    Veiga, M.C.3    Kennes, C.4
  • 34
    • 33745982644 scopus 로고    scopus 로고
    • Application of artificial neural networks to assess pesticide contamination in shallow groundwater
    • Sahoo GB, Ray C, Mehnert E, Keefer DA (2006) Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sci Total Environ 367(1):234–251
    • (2006) Sci Total Environ , vol.367 , Issue.1 , pp. 234-251
    • Sahoo, G.B.1    Ray, C.2    Mehnert, E.3    Keefer, D.A.4
  • 35
    • 84871115737 scopus 로고    scopus 로고
    • A review on the applications of wavelet transform in hydrology time series analysis
    • Sang Y-F (2013) A review on the applications of wavelet transform in hydrology time series analysis. Atmos Res 122:8–15
    • (2013) Atmos Res , vol.122 , pp. 8-15
    • Sang, Y.-F.1
  • 36
    • 84918576303 scopus 로고    scopus 로고
    • Time series modeling in water resources planning and management
    • Satyaji Rao YR, Krishna B, Nayak PC (2011) Time series modeling in water resources planning and management. Int J Earth Sci Eng 4(6):247–253
    • (2011) Int J Earth Sci Eng , vol.4 , Issue.6 , pp. 247-253
    • Satyaji Rao, Y.R.1    Krishna, B.2    Nayak, P.C.3
  • 37
    • 0035283095 scopus 로고    scopus 로고
    • Fractal characteristics of dense stream networks
    • Schuller DJ, Rao AR, Jeong GD (2001) Fractal characteristics of dense stream networks. J Hydrol 2001(243):1–16
    • (2001) J Hydrol , vol.2001 , Issue.243 , pp. 1-16
    • Schuller, D.J.1    Rao, A.R.2    Jeong, G.D.3
  • 38
    • 84876423750 scopus 로고    scopus 로고
    • Comparison of artificial neural network methods with L-moments for estimating flood flow at ungauged sites: the case of East Mediterranean River Basin, Turkey
    • Seckin N, Cobaner M, Yurtal R, Haktanir T (2013) Comparison of artificial neural network methods with L-moments for estimating flood flow at ungauged sites: the case of East Mediterranean River Basin, Turkey. Water Resour Manag 27(7):2103–2124
    • (2013) Water Resour Manag , vol.27 , Issue.7 , pp. 2103-2124
    • Seckin, N.1    Cobaner, M.2    Yurtal, R.3    Haktanir, T.4
  • 39
    • 84897571647 scopus 로고    scopus 로고
    • Effect of utilization of discrete wavelet components on flood forecasting performance of wavelet based ANFIS models
    • Sehgal V, Sahay R et al (2014) Effect of utilization of discrete wavelet components on flood forecasting performance of wavelet based ANFIS models. Water Resour Manag 28(6):1733–1749
    • (2014) Water Resour Manag , vol.28 , Issue.6 , pp. 1733-1749
    • Sehgal, V.1    Sahay, R.2
  • 41
    • 84916217205 scopus 로고    scopus 로고
    • Using wavelet transform to improve generalization capability of feed forward neural networks in monthly runoff prediction
    • Umut O (2012) Using wavelet transform to improve generalization capability of feed forward neural networks in monthly runoff prediction. Scientific Research and Essays 7 (17)
    • (2012) Scientific Research and Essays , vol.7 , Issue.17
    • Umut, O.1
  • 42
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • Wu CL, Chau KW et al (2009) Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour Res 45(8):1–23
    • (2009) Water Resour Res , vol.45 , Issue.8 , pp. 1-23
    • Wu, C.L.1    Chau, K.W.2
  • 43
    • 10444289065 scopus 로고    scopus 로고
    • Explanation of scaling phenomenon based on fractal fragmentation
    • Xu Y (2005) Explanation of scaling phenomenon based on fractal fragmentation. Mech Res Commun 32(2):209–220
    • (2005) Mech Res Commun , vol.32 , Issue.2 , pp. 209-220
    • Xu, Y.1
  • 44
    • 84902330428 scopus 로고    scopus 로고
    • Integrating wavelet analysis and BPANN to simulate the annual runoff with regional climate change: a case study of Yarkand River, Northwest China
    • Xu J, Chen Y et al (2014) Integrating wavelet analysis and BPANN to simulate the annual runoff with regional climate change: a case study of Yarkand River, Northwest China. Water Resour Manag 28(9):2523–2537
    • (2014) Water Resour Manag , vol.28 , Issue.9 , pp. 2523-2537
    • Xu, J.1    Chen, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.