메뉴 건너뛰기




Volumn 24, Issue 5, 2015, Pages

Performance-Estimation Properties of Cross-Validation-Based Protocols with Simultaneous Hyper-Parameter Optimization

Author keywords

comparative evaluation; cross validation; model selection; Performance estimation; stratification

Indexed keywords

LEARNING SYSTEMS; THERMAL STRATIFICATION;

EID: 84944598781     PISSN: 02182130     EISSN: 17936349     Source Type: Journal    
DOI: 10.1142/S0218213015400230     Document Type: Conference Paper
Times cited : (59)

References (36)
  • 1
    • 84875879529 scopus 로고    scopus 로고
    • In-sample and out-of-sample model selection and error estimation for support vector machines
    • September
    • D. Anguita, A. Ghio, L. Oneto and S. Ridella, In-sample and out-of-sample model selection and error estimation for support vector machines, IEEE Trans. Neural Networks Learn. Syst. 23(9) (September 2012) 1390-1406.
    • (2012) IEEE Trans. Neural Networks Learn. Syst. , vol.23 , Issue.9 , pp. 1390-1406
    • Anguita, D.1    Ghio, A.2    Oneto, L.3    Ridella, S.4
  • 2
    • 77956907243 scopus 로고    scopus 로고
    • On over-fitting in model selection and subsequent selection bias in performance evaluation
    • March
    • G. C. Cawley and N. L. C. Talbot, On over-fitting in model selection and subsequent selection bias in performance evaluation, J. Mach. Learn. Res. 11 (March 2010) 2079-2107.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2079-2107
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 3
    • 0033907286 scopus 로고    scopus 로고
    • Multiple comparisons in induction algorithms
    • D. D. Jensen and P. R. Cohen, Multiple comparisons in induction algorithms, Mach. Learn. 38 (2000) 309-338.
    • (2000) Mach. Learn. , vol.38 , pp. 309-338
    • Jensen, D.D.1    Cohen, P.R.2
  • 4
    • 77957226516 scopus 로고    scopus 로고
    • A bias correction for the minimum error rate in crossvalidation
    • June
    • R. J. Tibshirani and R. Tibshirani, A bias correction for the minimum error rate in crossvalidation, Ann. Appl. Stat. 3(2) (June 2009) 822-829.
    • (2009) Ann. Appl. Stat. , vol.3 , Issue.2 , pp. 822-829
    • Tibshirani, R.J.1    Tibshirani, R.2
  • 5
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in Int. Joint Conf. on Artificial Intelligence (1995), Vol. 14, pp. 1137-1143.
    • (1995) Int. Joint Conf. on Artificial Intelligence , vol.14 , pp. 1137-1143
    • Kohavi, R.1
  • 6
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • March
    • A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin and S. Levy, A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis, Bioinformatics 21(5) (March 2005) 631-643.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 10
    • 84863165439 scopus 로고    scopus 로고
    • The elements of statistical learning
    • T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning, Elements 1 (2009) 337-387.
    • (2009) Elements , vol.1 , pp. 337-387
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 13
    • 77955035481 scopus 로고    scopus 로고
    • Structure-based variable selection for survival data
    • V. Lagani and I. Tsamardinos, Structure-based variable selection for survival data, Bioinformatics 26(15) (2010) 1887-1894.
    • (2010) Bioinformatics , vol.26 , Issue.15 , pp. 1887-1894
    • Lagani, V.1    Tsamardinos, I.2
  • 14
    • 22544475586 scopus 로고    scopus 로고
    • GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
    • August
    • A. Statnikov, I. Tsamardinos, Y. Dosbayev and C. F. Aliferis, GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data, Int. J. Med. Inform. 74(7-8) (August 2005) 491-503.
    • (2005) Int. J. Med. Inform. , vol.74 , Issue.7-8 , pp. 491-503
    • Statnikov, A.1    Tsamardinos, I.2    Dosbayev, Y.3    Aliferis, C.F.4
  • 15
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • S. Salzberg, On comparing classifiers: Pitfalls to avoid and a recommended approach, Data Min. Knowl. Discov. 328 (1997) 317-328.
    • (1997) Data Min. Knowl. Discov. , vol.328 , pp. 317-328
    • Salzberg, S.1
  • 19
    • 84876578435 scopus 로고    scopus 로고
    • Quantitative structureactivity relationship models for ready biodegradability of chemicals
    • K. Mansouri, T. Ringsted, D. Ballabio, R. Todeschini and V. Consonni, Quantitative structureactivity relationship models for ready biodegradability of chemicals, J. Chem. Inf. Model 53 (2013) 867-878.
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 867-878
    • Mansouri, K.1    Ringsted, T.2    Ballabio, D.3    Todeschini, R.4    Consonni, V.5
  • 20
    • 84899004772 scopus 로고    scopus 로고
    • Using data mining for bank direct marketing: An application of the CRISP-DM methodology
    • S. Moro and R. M. S. Laureano, Using data mining for bank direct marketing: An application of the CRISP-DM methodology, Eur. Simul. Model. Conf. (2011), pp. 117-121.
    • (2011) Eur. Simul. Model. Conf. , pp. 117-121
    • Moro, S.1    Laureano, R.M.S.2
  • 22
    • 79960416857 scopus 로고    scopus 로고
    • Application of rule induction algorithms for analysis of data collected by seismic hazard monitoring systems in coal mines
    • M. Sikora and L. Wrobel, Application of rule induction algorithms for analysis of data collected by seismic hazard monitoring systems in coal mines, Arch. Min. Sci. 55(1) (2010) 91-114.
    • (2010) Arch. Min. Sci. , vol.55 , Issue.1 , pp. 91-114
    • Sikora, M.1    Wrobel, L.2
  • 25
  • 27
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • I. Tsamardinos, L. E. Brown and C. F. Aliferis, The max-min hill-climbing Bayesian network structure learning algorithm, Mach. Learn. 65(1) (2006) 31-78.
    • (2006) Mach. Learn. , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 28
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett. 27 (2006) 861-874.
    • (2006) Pattern Recognit. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 30
    • 0001720276 scopus 로고
    • A general ANOVA method for robust tests of additive models for variances
    • December
    • R. G. O'brien, A general ANOVA method for robust tests of additive models for variances, J. Am. Stat. Assoc. 74(368) (December 1979) 877-880.
    • (1979) J. Am. Stat. Assoc. , vol.74 , Issue.368 , pp. 877-880
    • O'Brien, R.G.1
  • 31
    • 0346925690 scopus 로고
    • Approximate tests of correlation in time-series 3
    • October
    • M. H. Quenouille, Approximate tests of correlation in time-series 3, Math. Proc. Cambridge Philos. Soc. 45(03) (October 1949) 483-484.
    • (1949) Math. Proc. Cambridge Philos. Soc. , vol.45 , Issue.3 , pp. 483-484
    • Quenouille, M.H.1
  • 32
    • 33644860703 scopus 로고    scopus 로고
    • Bias in error estimation when using cross-validation for model selection
    • January
    • S. Varma and R. Simon, Bias in error estimation when using cross-validation for model selection, BMC Bioinformatics 7 (January 2006) 91.
    • (2006) BMC Bioinformatics , vol.7 , pp. 91
    • Varma, S.1    Simon, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.