-
1
-
-
84875879529
-
In-sample and out-of-sample model selection and error estimation for support vector machines
-
September
-
D. Anguita, A. Ghio, L. Oneto and S. Ridella, In-sample and out-of-sample model selection and error estimation for support vector machines, IEEE Trans. Neural Networks Learn. Syst. 23(9) (September 2012) 1390-1406.
-
(2012)
IEEE Trans. Neural Networks Learn. Syst.
, vol.23
, Issue.9
, pp. 1390-1406
-
-
Anguita, D.1
Ghio, A.2
Oneto, L.3
Ridella, S.4
-
2
-
-
77956907243
-
On over-fitting in model selection and subsequent selection bias in performance evaluation
-
March
-
G. C. Cawley and N. L. C. Talbot, On over-fitting in model selection and subsequent selection bias in performance evaluation, J. Mach. Learn. Res. 11 (March 2010) 2079-2107.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2079-2107
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
3
-
-
0033907286
-
Multiple comparisons in induction algorithms
-
D. D. Jensen and P. R. Cohen, Multiple comparisons in induction algorithms, Mach. Learn. 38 (2000) 309-338.
-
(2000)
Mach. Learn.
, vol.38
, pp. 309-338
-
-
Jensen, D.D.1
Cohen, P.R.2
-
4
-
-
77957226516
-
A bias correction for the minimum error rate in crossvalidation
-
June
-
R. J. Tibshirani and R. Tibshirani, A bias correction for the minimum error rate in crossvalidation, Ann. Appl. Stat. 3(2) (June 2009) 822-829.
-
(2009)
Ann. Appl. Stat.
, vol.3
, Issue.2
, pp. 822-829
-
-
Tibshirani, R.J.1
Tibshirani, R.2
-
5
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in Int. Joint Conf. on Artificial Intelligence (1995), Vol. 14, pp. 1137-1143.
-
(1995)
Int. Joint Conf. on Artificial Intelligence
, vol.14
, pp. 1137-1143
-
-
Kohavi, R.1
-
6
-
-
15844413351
-
A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
-
March
-
A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin and S. Levy, A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis, Bioinformatics 21(5) (March 2005) 631-643.
-
(2005)
Bioinformatics
, vol.21
, Issue.5
, pp. 631-643
-
-
Statnikov, A.1
Aliferis, C.F.2
Tsamardinos, I.3
Hardin, D.4
Levy, S.5
-
10
-
-
84863165439
-
The elements of statistical learning
-
T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning, Elements 1 (2009) 337-387.
-
(2009)
Elements
, vol.1
, pp. 337-387
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
13
-
-
77955035481
-
Structure-based variable selection for survival data
-
V. Lagani and I. Tsamardinos, Structure-based variable selection for survival data, Bioinformatics 26(15) (2010) 1887-1894.
-
(2010)
Bioinformatics
, vol.26
, Issue.15
, pp. 1887-1894
-
-
Lagani, V.1
Tsamardinos, I.2
-
14
-
-
22544475586
-
GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
-
August
-
A. Statnikov, I. Tsamardinos, Y. Dosbayev and C. F. Aliferis, GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data, Int. J. Med. Inform. 74(7-8) (August 2005) 491-503.
-
(2005)
Int. J. Med. Inform.
, vol.74
, Issue.7-8
, pp. 491-503
-
-
Statnikov, A.1
Tsamardinos, I.2
Dosbayev, Y.3
Aliferis, C.F.4
-
15
-
-
27144463192
-
On comparing classifiers: Pitfalls to avoid and a recommended approach
-
S. Salzberg, On comparing classifiers: Pitfalls to avoid and a recommended approach, Data Min. Knowl. Discov. 328 (1997) 317-328.
-
(1997)
Data Min. Knowl. Discov.
, vol.328
, pp. 317-328
-
-
Salzberg, S.1
-
16
-
-
0037443891
-
Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
-
March
-
N. Iizuka, M. Oka, H. Yamada-Okabe, M. Nishida, Y. Maeda, N. Mori, T. Takao, T. Tamesa, A. Tangoku, H. Tabuchi, K. Hamada, H. Nakayama, H. Ishitsuka, T. Miyamoto, A. Hirabayashi, S. Uchimura and Y. Hamamoto, Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection, Lancet 361(9361) (March 2003) 923-929.
-
(2003)
Lancet
, vol.361
, Issue.9361
, pp. 923-929
-
-
Iizuka, N.1
Oka, M.2
Yamada-Okabe, H.3
Nishida, M.4
Maeda, Y.5
Mori, N.6
Takao, T.7
Tamesa, T.8
Tangoku, A.9
Tabuchi, H.10
Hamada, K.11
Nakayama, H.12
Ishitsuka, H.13
Miyamoto, T.14
Hirabayashi, A.15
Uchimura, S.16
Hamamoto, Y.17
-
17
-
-
0034807546
-
Knowledge discovery approach to automated cardiac SPECT diagnosis
-
October
-
L. A. Kurgan, K. J. Cios, R. Tadeusiewicz, M. Ogiela and L. S. Goodenday, Knowledge discovery approach to automated cardiac SPECT diagnosis, Artif. Intell. Med. 23(2) (October 2001) 149-169.
-
(2001)
Artif. Intell. Med.
, vol.23
, Issue.2
, pp. 149-169
-
-
Kurgan, L.A.1
Cios, K.J.2
Tadeusiewicz, R.3
Ogiela, M.4
Goodenday, L.S.5
-
18
-
-
0346846461
-
Methods for multidimensional event classification: A case study using images from a Cherenkov gamma-ray telescope
-
January
-
R. K. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jiina, J. Klaschka, E. Kotr, P. Savický, S. Towers, A. Vaiciulis and W. Wittek, Methods for multidimensional event classification: A case study using images from a Cherenkov gamma-ray telescope, Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 516(2-3) (January 2004) 511-528.
-
(2004)
Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip.
, vol.516
, Issue.2-3
, pp. 511-528
-
-
Bock, R.K.1
Chilingarian, A.2
Gaug, M.3
Hakl, F.4
Hengstebeck, T.5
Jiina, M.6
Klaschka, J.7
Kotr, E.8
Savický, P.9
Towers, S.10
Vaiciulis, A.11
Wittek, W.12
-
19
-
-
84876578435
-
Quantitative structureactivity relationship models for ready biodegradability of chemicals
-
K. Mansouri, T. Ringsted, D. Ballabio, R. Todeschini and V. Consonni, Quantitative structureactivity relationship models for ready biodegradability of chemicals, J. Chem. Inf. Model 53 (2013) 867-878.
-
(2013)
J. Chem. Inf. Model
, vol.53
, pp. 867-878
-
-
Mansouri, K.1
Ringsted, T.2
Ballabio, D.3
Todeschini, R.4
Consonni, V.5
-
20
-
-
84899004772
-
Using data mining for bank direct marketing: An application of the CRISP-DM methodology
-
S. Moro and R. M. S. Laureano, Using data mining for bank direct marketing: An application of the CRISP-DM methodology, Eur. Simul. Model. Conf. (2011), pp. 117-121.
-
(2011)
Eur. Simul. Model. Conf.
, pp. 117-121
-
-
Moro, S.1
Laureano, R.M.S.2
-
21
-
-
79955750055
-
Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
-
May
-
S. C. Bendall, E. F. Simonds, P. Qiu, E. D. Amir, P. O. Krutzik, R. Finck, R. V Bruggner, R. Melamed, A. Trejo, O. I. Ornatsky, R. S. Balderas, S. K. Plevritis, K. Sachs, D. Pe'er, S. D. Tanner and G. P. Nolan, Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum, Science 332(6030) (May 2011) 687-696.
-
(2011)
Science
, vol.332
, Issue.6030
, pp. 687-696
-
-
Bendall, S.C.1
Simonds, E.F.2
Qiu, P.3
Amir, E.D.4
Krutzik, P.O.5
Finck, R.6
Bruggner, R.V.7
Melamed, R.8
Trejo, A.9
Ornatsky, O.I.10
Balderas, R.S.11
Plevritis, S.K.12
Sachs, K.13
Pe'Er, D.14
Tanner, S.D.15
Nolan, G.P.16
-
22
-
-
79960416857
-
Application of rule induction algorithms for analysis of data collected by seismic hazard monitoring systems in coal mines
-
M. Sikora and L. Wrobel, Application of rule induction algorithms for analysis of data collected by seismic hazard monitoring systems in coal mines, Arch. Min. Sci. 55(1) (2010) 91-114.
-
(2010)
Arch. Min. Sci.
, vol.55
, Issue.1
, pp. 91-114
-
-
Sikora, M.1
Wrobel, L.2
-
23
-
-
34547277488
-
Search for electron neutrino appearance at the m2 ~ 1 eV2 scale
-
A. A. Aguilar-Arevalo, A. O. Bazarko, S. J. Brice, B. C. Brown, L. Bugel, J. Cao, L. Coney, J. M. Conrad, D. C. Cox, A. Curioni, Z. Djurcic, D. A. Finley, B. T. Fleming, R. Ford, F. G. Garcia, G. T. Garvey, C. Green, J. A. Green, T. L. Hart, E. Hawker, R. Imlay, R. A. Johnson, P. Kasper, T. Katori, T. Kobilarcik, I. Kourbanis, S. Koutsoliotas, E. M. Laird, J. M. Link, Y. Liu, Y. Liu, W. C. Louis, K. B. M. Mahn, W. Marsh, P. S. Martin, G. McGregor, W. Metcalf, P. D. Meyers, F. Mills, G. B. Mills, J. Monroe, C. D. Moore, R. H. Nelson, P. Nienaber, S. Ouedraogo, R. B. Patterson, D. Perevalov, C. C. Polly, E. Prebys, J. L. Raaf, H. Ray, B. P. Roe, A. D. Russell, V. Sandberg, R. Schirato, D. Schmitz, M. H. Shaevitz, F. C. Shoemaker, D. Smith, M. Sorel, P. Spentzouris, I. Stancu, R. J. Stefanski, M. Sung, H. A. Tanaka, R. Tayloe, M. Tzanov, R. Van de Water, M. O. Wascko, D. H. White, M. J. Wilking, H. J. Yang, G. P. Zeller and E. D. Zimmerman, Search for electron neutrino appearance at the m2 ~ 1 eV2 scale, Phys. Rev. Lett. 98 (2007) 231801.
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 231801
-
-
Aguilar-Arevalo, A.A.1
Bazarko, A.O.2
Brice, S.J.3
Brown, B.C.4
Bugel, L.5
Cao, J.6
Coney, L.7
Conrad, J.M.8
Cox, D.C.9
Curioni, A.10
Djurcic, Z.11
Finley, D.A.12
Fleming, B.T.13
Ford, R.14
Garcia, F.G.15
Garvey, G.T.16
Green, C.17
Green, J.A.18
Hart, T.L.19
Hawker, E.20
Imlay, R.21
Johnson, R.A.22
Kasper, P.23
Katori, T.24
Kobilarcik, T.25
Kourbanis, I.26
Koutsoliotas, S.27
Laird, E.M.28
Link, J.M.29
Liu, Y.30
Liu, Y.31
Louis, W.C.32
Mahn, K.B.M.33
Marsh, W.34
Martin, P.S.35
McGregor, G.36
Metcalf, W.37
Meyers, P.D.38
Mills, F.39
Mills, G.B.40
Monroe, J.41
Moore, C.D.42
Nelson, R.H.43
Nienaber, P.44
Ouedraogo, S.45
Patterson, R.B.46
Perevalov, D.47
Polly, C.C.48
Prebys, E.49
Raaf, J.L.50
Ray, H.51
Roe, B.P.52
Russell, A.D.53
Sandberg, V.54
Schirato, R.55
Schmitz, D.56
Shaevitz, M.H.57
Shoemaker, F.C.58
Smith, D.59
Sorel, M.60
Spentzouris, P.61
Stancu, I.62
Stefanski, R.J.63
Sung, M.64
Tanaka, H.A.65
Tayloe, R.66
Tzanov, M.67
Van De Water, R.68
Wascko, M.O.69
White, D.H.70
Wilking, M.J.71
Yang, H.J.72
Zeller, G.P.73
Zimmerman, E.D.74
more..
-
27
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
I. Tsamardinos, L. E. Brown and C. F. Aliferis, The max-min hill-climbing Bayesian network structure learning algorithm, Mach. Learn. 65(1) (2006) 31-78.
-
(2006)
Mach. Learn.
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
-
28
-
-
33646023117
-
An introduction to ROC analysis
-
T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett. 27 (2006) 861-874.
-
(2006)
Pattern Recognit. Lett.
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
29
-
-
79956360897
-
A comparison of AUC estimators in small-sample studies
-
A. Airola, T. Pahikkala, W. Waegeman, B. De Baets and T. Salakoski, A comparison of AUC estimators in small-sample studies, J. Mach. Learn. Res. W&CP 8 (2010) 3-13.
-
(2010)
J. Mach. Learn. Res. W&CP
, vol.8
, pp. 3-13
-
-
Airola, A.1
Pahikkala, T.2
Waegeman, W.3
De Baets, B.4
Salakoski, T.5
-
30
-
-
0001720276
-
A general ANOVA method for robust tests of additive models for variances
-
December
-
R. G. O'brien, A general ANOVA method for robust tests of additive models for variances, J. Am. Stat. Assoc. 74(368) (December 1979) 877-880.
-
(1979)
J. Am. Stat. Assoc.
, vol.74
, Issue.368
, pp. 877-880
-
-
O'Brien, R.G.1
-
31
-
-
0346925690
-
Approximate tests of correlation in time-series 3
-
October
-
M. H. Quenouille, Approximate tests of correlation in time-series 3, Math. Proc. Cambridge Philos. Soc. 45(03) (October 1949) 483-484.
-
(1949)
Math. Proc. Cambridge Philos. Soc.
, vol.45
, Issue.3
, pp. 483-484
-
-
Quenouille, M.H.1
-
32
-
-
33644860703
-
Bias in error estimation when using cross-validation for model selection
-
January
-
S. Varma and R. Simon, Bias in error estimation when using cross-validation for model selection, BMC Bioinformatics 7 (January 2006) 91.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 91
-
-
Varma, S.1
Simon, R.2
-
36
-
-
84897523758
-
Structure discovery in nonparametric regression through compositional kernel search
-
D. Duvenaud, J. Lloyd, R. Grosse, J. Tenenbaum and Z. Ghahramani, Structure discovery in nonparametric regression through compositional kernel search, in Proc. of the Int. Conf. on Machine Learning (ICML) (2013), Vol. 30, pp. 1166-1174.
-
(2013)
Proc. of the Int. Conf. on Machine Learning (ICML)
, vol.30
, pp. 1166-1174
-
-
Duvenaud, D.1
Lloyd, J.2
Grosse, R.3
Tenenbaum, J.4
Ghahramani, Z.5
|