메뉴 건너뛰기




Volumn , Issue , 2005, Pages 75-95

Bias in estimating the variance of K-fold cross-validation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84863051852     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/0-387-24555-3_5     Document Type: Chapter
Times cited : (42)

References (13)
  • 1
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 x 2 cv F test for comparing supervised classification learning algorithms
    • Alpaydin, E. (1999). Combined 5 x 2 cv F test for comparing supervised classification learning algorithms. Neural Computation, 11:1885-1892.
    • (1999) Neural Computation , vol.11 , pp. 1885-1892
    • Alpaydin, E.1
  • 4
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman, L. (1996). Heuristics of instability and stabilization in model selection. The Annals of Statistics, 24:2350-2383.
    • (1996) The Annals of Statistics , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 5
    • 4043168147 scopus 로고    scopus 로고
    • Prequential analysis
    • Kotz, S., Read, C. B., and Banks, D. L., editors, Wiley-Interscience
    • Dawid, A. P. (1997). Prequential analysis. In Kotz, S., Read, C. B., and Banks, D. L., editors, Encyclopedia of Statistical Sciences, Update Volume 1, pages 464-470. Wiley-Interscience.
    • (1997) Encyclopedia of Statistical Sciences, Update , vol.1 , pp. 464-470
    • Dawid, A.P.1
  • 7
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. G. (1999). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10:1895-1924.
    • (1999) Neural Computation , vol.10 , pp. 1895-1924
    • Dietterich, T.G.1
  • 10
    • 0033566418 scopus 로고    scopus 로고
    • Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
    • Kearns, M. and Ron, D. (1996). Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. Neural Computation, 11:1427-1453.
    • (1996) Neural Computation , vol.11 , pp. 1427-1453
    • Kearns, M.1    Ron, D.2
  • 12
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau, C. and Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52:239-281.
    • (2003) Machine Learning , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 13
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, Series B, 36:111-147.
    • (1974) Journal of the Royal Statistical Society, Series B , vol.36 , pp. 111-147
    • Stone, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.