-
1
-
-
84902551784
-
Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects
-
Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 2014;9:223-43
-
(2014)
Nano Today
, vol.9
, pp. 223-243
-
-
Barua, S.1
Mitragotri, S.2
-
2
-
-
84908299353
-
Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies
-
Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 2014;13:655-72
-
(2014)
Nat Rev Drug Discov
, vol.13
, pp. 655-672
-
-
Mitragotri, S.1
Burke, P.A.2
Langer, R.3
-
4
-
-
84888390732
-
Drug delivery interfaces in the 21st century: From science fiction ideas to viable technologies
-
Chertok B, Webber MJ, Succi MD, Langer R. Drug delivery interfaces in the 21st century: from science fiction ideas to viable technologies. Mol Pharm 2013;10:3531-43
-
(2013)
Mol Pharm
, vol.10
, pp. 3531-3543
-
-
Chertok, B.1
Webber, M.J.2
Succi, M.D.3
Langer, R.4
-
5
-
-
0025047522
-
New methods of drug delivery
-
Langer R. New methods of drug delivery. Science 1990;249: 1527-33
-
(1990)
Science
, vol.249
, pp. 1527-1533
-
-
Langer, R.1
-
6
-
-
0032580354
-
Drug delivery and targeting
-
Langer R. Drug delivery and targeting. Nature 1998;392:5-10
-
(1998)
Nature
, vol.392
, pp. 5-10
-
-
Langer, R.1
-
7
-
-
61849153021
-
Impact of nanotechnology on drug delivery
-
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009;3:16-20
-
(2009)
ACS Nano
, vol.3
, pp. 16-20
-
-
Farokhzad, O.C.1
Langer, R.2
-
8
-
-
77956434412
-
Nanotechnology in drug delivery and tissue engineering: From discovery to applications
-
Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 2010;10:3223-30
-
(2010)
Nano Lett
, vol.10
, pp. 3223-3230
-
-
Shi, J.1
Votruba, A.R.2
Farokhzad, O.C.3
Langer, R.4
-
9
-
-
84858665432
-
Preclinical development and clinical translation of a psma-targeted docetaxel nanoparticle with a differentiated pharmacological profile
-
article 128ra39
-
Hrkach J, Von Hoff D, Ali MM, et al. Preclinical development and clinical translation of a psma-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 2012; 4:article 128ra39
-
(2012)
Sci Transl Med
, vol.4
-
-
Hrkach, J.1
Von Hoff, D.2
Ali, M.M.3
-
10
-
-
33751419875
-
Nanomedicine: Developing smarter therapeutic and diagnostic modalities
-
Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006; 58:1456-9
-
(2006)
Adv Drug Deliv Rev
, vol.58
, pp. 1456-1459
-
-
Farokhzad, O.C.1
Langer, R.2
-
11
-
-
36849067019
-
Nanocarriers as an emerging platform for cancer therapy
-
Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751-60
-
(2007)
Nat Nanotechnol
, vol.2
, pp. 751-760
-
-
Peer, D.1
Karp, J.M.2
Hong, S.3
-
13
-
-
84919884295
-
Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis
-
Luk BT, Zhang L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces 2014;6:21859-73
-
(2014)
ACS Appl Mater Interfaces
, vol.6
, pp. 21859-21873
-
-
Luk, B.T.1
Zhang, L.2
-
14
-
-
0034996764
-
Long-circulating and targetspecific nanoparticles: Theory to practice
-
Moghimi SM, Hunter AC, Murray JC. Long-circulating and targetspecific nanoparticles: theory to practice. Pharmacol Rev 2001;53: 283-318
-
(2001)
Pharmacol Rev
, vol.53
, pp. 283-318
-
-
Moghimi, S.M.1
Hunter, A.C.2
Murray, J.C.3
-
16
-
-
51049092308
-
Factors affecting the clearance and biodistribution of polymeric nanoparticles
-
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5:505-15
-
(2008)
Mol Pharm
, vol.5
, pp. 505-515
-
-
Alexis, F.1
Pridgen, E.2
Molnar, L.K.3
Farokhzad, O.C.4
-
17
-
-
84888858196
-
Synergistic targeting of cell membrane, cytoplasm, and nucleus of cancer cells using rod-shaped nanoparticles
-
Barua S, Mitragotri S. Synergistic targeting of cell membrane, cytoplasm, and nucleus of cancer cells using rod-shaped nanoparticles. ACS Nano 2013;7:9558-70
-
(2013)
ACS Nano
, vol.7
, pp. 9558-9570
-
-
Barua, S.1
Mitragotri, S.2
-
18
-
-
84879536016
-
Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium
-
Kolhar P, Anselmo AC, Gupta V, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci USA 2013;110:10753-8
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 10753-10758
-
-
Kolhar, P.1
Anselmo, A.C.2
Gupta, V.3
-
19
-
-
84874460666
-
Particle shape enhances specificity of antibody-displaying nanoparticles
-
Barua S, Yoo J-W, Kolhar P, et al. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci USA 2013;110:3270-5
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 3270-3275
-
-
Barua, S.1
Yoo, J.-W.2
Kolhar, P.3
-
20
-
-
84863726330
-
Molecularly selfassembled nucleic acid nanoparticles for targeted in vivo siRNA delivery
-
Lee H, Lytton-Jean AKR, Chen Y, et al. Molecularly selfassembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 2012;7:389-93
-
(2012)
Nat Nanotechnol
, vol.7
, pp. 389-393
-
-
Lee, H.1
Akr, L.2
Chen, Y.3
-
21
-
-
84876255289
-
Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles
-
Kamaly N, Fredman G, Subramanian M, et al. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc Natl Acad Sci USA 2013;110:6506-11
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 6506-6511
-
-
Kamaly, N.1
Fredman, G.2
Subramanian, M.3
-
22
-
-
0019212263
-
Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein - A
-
Leserman LD, Barbet J, Kourilsky F, Weinstein JN. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein-a. Nature 1980;288:602-4
-
(1980)
Nature
, vol.288
, pp. 602-604
-
-
Leserman, L.D.1
Barbet, J.2
Kourilsky, F.3
Weinstein, J.N.4
-
23
-
-
0019336776
-
Antibody targeting of liposomes - Cell specificity obtained by conjugation of f(ab')2 to vesicle surface
-
Heath TD, Fraley RT, Papahadjopoulos D. Antibody targeting of liposomes - cell specificity obtained by conjugation of f(ab')2 to vesicle surface. Science 1980;210:539-41
-
(1980)
Science
, vol.210
, pp. 539-541
-
-
Heath, T.D.1
Fraley, R.T.2
Papahadjopoulos, D.3
-
24
-
-
33646582037
-
Targeted nanoparticleaptamer bioconjugates for cancer chemotherapy in vivo
-
Farokhzad OC, Cheng JJ, Teply BA, et al. Targeted nanoparticleaptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006;103:6315-20
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 6315-6320
-
-
Farokhzad, O.C.1
Cheng, J.J.2
Teply, B.A.3
-
25
-
-
79959872019
-
Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles
-
Valencia PM, Hanewich-Hollatz MH, Gao W, et al. Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. Biomaterials 2011;32: 6226-33
-
(2011)
Biomaterials
, vol.32
, pp. 6226-6233
-
-
Valencia, P.M.1
Hanewich-Hollatz, M.H.2
Gao, W.3
-
26
-
-
84868270139
-
Using ligands to target cancer cells
-
Farokhzad OC. Using ligands to target cancer cells. Clin Adv Hematol Oncol 2012;10:543-4
-
(2012)
Clin Adv Hematol Oncol
, vol.10
, pp. 543-544
-
-
Farokhzad, O.C.1
-
27
-
-
78649934086
-
Ph-responsive nanoparticles for drug delivery
-
Gao W, Chan JM, Farokhzad OC. Ph-responsive nanoparticles for drug delivery. Mol Pharm 2010;7:1913-20
-
(2010)
Mol Pharm
, vol.7
, pp. 1913-1920
-
-
Gao, W.1
Chan, J.M.2
Farokhzad, O.C.3
-
28
-
-
84864706328
-
Surface chargeswitching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics
-
Radovic-Moreno AF, Lu TK, Puscasu VA, et al. Surface chargeswitching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 2012;6:4279-87
-
(2012)
ACS Nano
, vol.6
, pp. 4279-4287
-
-
Radovic-Moreno, A.F.1
Lu, T.K.2
Puscasu, V.A.3
-
29
-
-
84910010660
-
A solvent-free thermosponge nanoparticle platform for efficient delivery of labile proteins
-
Choi WI, Kamaly N, Riol-Blanco L, et al. A solvent-free thermosponge nanoparticle platform for efficient delivery of labile proteins. Nano Lett 2014;14:6449-55
-
(2014)
Nano Lett
, vol.14
, pp. 6449-6455
-
-
Choi, W.I.1
Kamaly, N.2
Riol-Blanco, L.3
-
30
-
-
42349094203
-
Nanoparticles in medicine: Therapeutic applications and developments
-
Zhang L, Gu FX, Chan JM, et al. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008;83:761-9
-
(2008)
Clin Pharmacol Ther
, vol.83
, pp. 761-769
-
-
Zhang, L.1
Gu, F.X.2
Chan, J.M.3
-
31
-
-
84925286156
-
Managing diabetes with nanomedicine: Challenges and opportunities
-
Veiseh O, Tang BC, Whitehead KA, et al. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 2015;14:45-57
-
(2015)
Nat Rev Drug Discov
, vol.14
, pp. 45-57
-
-
Veiseh, O.1
Tang, B.C.2
Whitehead, K.A.3
-
33
-
-
80054741757
-
Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation
-
Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res 2011;44:1123-34
-
(2011)
Acc Chem Res
, vol.44
, pp. 1123-1134
-
-
Shi, J.1
Xiao, Z.2
Kamaly, N.3
Farokhzad, O.C.4
-
34
-
-
84858652159
-
Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation
-
Kamaly N, Xiao Z, Valencia PM, et al. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 2012;41:2971-3010
-
(2012)
Chem Soc Rev
, vol.41
, pp. 2971-3010
-
-
Kamaly, N.1
Xiao, Z.2
Valencia, P.M.3
-
35
-
-
11144354599
-
Phase i and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in peg immunoliposome, in patients with metastatic stomach cancer
-
Matsumura Y, Gotoh M, Muro K, et al. Phase i and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in peg immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 2004;15:517-25
-
(2004)
Ann Oncol
, vol.15
, pp. 517-525
-
-
Matsumura, Y.1
Gotoh, M.2
Muro, K.3
-
36
-
-
84888200235
-
Open label phase i study of MBP-426, a novel formulation of oxaliplatin, in patients with advanced or metastatic solid tumors
-
Phan A, Takimoto C, Adinin R, et al. Open label phase I study of MBP-426, a novel formulation of oxaliplatin, in patients with advanced or metastatic solid tumors. Mol Cancer Ther 2007;6: 3563S
-
(2007)
Mol Cancer Ther
, vol.6
, pp. 3563S
-
-
Phan, A.1
Takimoto, C.2
Adinin, R.3
-
37
-
-
77951132901
-
Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles
-
Davis ME, Zuckerman JE, Choi CHJ, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010;464:1067-70
-
(2010)
Nature
, vol.464
, pp. 1067-1070
-
-
Davis, M.E.1
Zuckerman, J.E.2
Chj, C.3
-
38
-
-
67249128859
-
The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic
-
Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 2009;6:659-68
-
(2009)
Mol Pharm
, vol.6
, pp. 659-668
-
-
Davis, M.E.1
-
39
-
-
1842484779
-
Designing materials for biology and medicine
-
Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 2004;428:487-92
-
(2004)
Nature
, vol.428
, pp. 487-492
-
-
Langer, R.1
Tirrell, D.A.2
-
40
-
-
84923484034
-
Bioinspired structural materials
-
Wegst UGK, Bai H, Saiz E, et al. Bioinspired structural materials. Nat Mater 2015;14:23-36
-
(2015)
Nat Mater
, vol.14
, pp. 23-36
-
-
Ugk, W.1
Bai, H.2
Saiz, E.3
-
41
-
-
84886287251
-
Engineering synthetic vaccines using cues from natural immunity
-
Irvine DJ, Swartz MA, Szeto GL. Engineering synthetic vaccines using cues from natural immunity. Nat Mater 2013;12:978-90
-
(2013)
Nat Mater
, vol.12
, pp. 978-990
-
-
Irvine, D.J.1
Swartz, M.A.2
Szeto, G.L.3
-
42
-
-
84919725932
-
Nanomimics of host cell membranes block invasion and expose invasive malaria parasites
-
Najer A, Wu D, Bieri A, et al. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites. ACS Nano 2014;8:12560-71
-
(2014)
ACS Nano
, vol.8
, pp. 12560-12571
-
-
Najer, A.1
Wu, D.2
Bieri, A.3
-
43
-
-
84864139993
-
Biomimetic delivery with micro- and nanoparticles
-
Balmert SC, Little SR. Biomimetic delivery with micro- and nanoparticles. Adv Mater 2012;24:3757-78
-
(2012)
Adv Mater
, vol.24
, pp. 3757-3778
-
-
Balmert, S.C.1
Little, S.R.2
-
44
-
-
79960583505
-
Erythrocyte membranecamouflaged polymeric nanoparticles as a biomimetic delivery platform
-
Hu C-MJ, Zhang L, Aryal S, et al. Erythrocyte membranecamouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011;108:10980-5
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 10980-10985
-
-
C-Mj, H.1
Zhang, L.2
Aryal, S.3
-
45
-
-
84877583385
-
A biomimetic nanosponge that absorbs pore-forming toxins
-
Hu C-MJ, Fang RH, Copp J, et al. A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 2013;8:336-40
-
(2013)
Nat Nanotechnol
, vol.8
, pp. 336-340
-
-
C-Mj, H.1
Fang, R.H.2
Copp, J.3
-
46
-
-
84890564255
-
Nanoparticle-detained toxins for safe and effective vaccination
-
Hu C-MJ, Fang RH, Luk BT, Zhang L. Nanoparticle-detained toxins for safe and effective vaccination. Nat Nanotechnol 2013;8: 933-8
-
(2013)
Nat Nanotechnol
, vol.8
, pp. 933-938
-
-
C-Mj, H.1
Fang, R.H.2
Luk, B.T.3
Zhang, L.4
-
47
-
-
84922620557
-
Engineering red blood cell membrane-coated nanoparticles for broad biomedical applications
-
Gao W, Zhang L. Engineering red blood cell membrane-coated nanoparticles for broad biomedical applications. AIChE J 2015;61: 738-46
-
(2015)
AIChE J
, vol.61
, pp. 738-746
-
-
Gao, W.1
Zhang, L.2
-
49
-
-
51049090204
-
Nanoparticle therapeutics: An emerging treatment modality for cancer
-
Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7:771-82
-
(2008)
Nat Rev Drug Discov
, vol.7
, pp. 771-782
-
-
Davis, M.E.1
Chen, Z.2
Shin, D.M.3
-
50
-
-
84890195696
-
Polymeric nanotherapeutics: Clinical development and advances in stealth functionalization strategies
-
Hu C-MJ, Fang RH, Luk BT, Zhang L. Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nanoscale 2014;6:65-75
-
(2014)
Nanoscale
, vol.6
, pp. 65-75
-
-
C-Mj, H.1
Fang, R.H.2
Luk, B.T.3
Zhang, L.4
-
52
-
-
84919742975
-
Turning erythrocytes into functional micromotors
-
Wu Z, Li T, Li J, et al. Turning erythrocytes into functional micromotors. ACS Nano 2014;8:12041-8
-
(2014)
ACS Nano
, vol.8
, pp. 12041-12048
-
-
Wu, Z.1
Li, T.2
Li, J.3
-
53
-
-
77949878932
-
Drug delivery by red blood cells: Vascular carriers designed by mother nature
-
Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 2010;7: 403-27
-
(2010)
Expert Opin Drug Deliv
, vol.7
, pp. 403-427
-
-
Muzykantov, V.R.1
-
54
-
-
84894653388
-
Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles
-
Luk BT, Hu C-MJ, Fang RH, et al. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 2014;6:2730-7
-
(2014)
Nanoscale
, vol.6
, pp. 2730-2737
-
-
Luk, B.T.1
C-Mj, H.2
Fang, R.H.3
-
55
-
-
84874169973
-
Minimal ''self'' peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles
-
Rodriguez PL, Harada T, Christian DA, et al. Minimal ''self'' peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013;339:971-5
-
(2013)
Science
, vol.339
, pp. 971-975
-
-
Rodriguez, P.L.1
Harada, T.2
Christian, D.A.3
-
56
-
-
84886046021
-
Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach
-
Hu C-MJ, Fang RH, Luk BT, et al. 'Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 2013;5:2664-8
-
(2013)
Nanoscale
, vol.5
, pp. 2664-2668
-
-
Hu, C.-M.J.1
Fang, R.H.2
Luk, B.T.3
-
57
-
-
77956530816
-
Poly(ethylene glycol) with observable shedding
-
Gao W, Langer R, Farokhzad OC. Poly(ethylene glycol) with observable shedding. Angew Chem Int Ed 2010;49: 6567-71
-
(2010)
Angew Chem Int Ed
, vol.49
, pp. 6567-6571
-
-
Gao, W.1
Langer, R.2
Farokhzad, O.C.3
-
58
-
-
84879982164
-
Surface functionalization of gold nanoparticles with red blood cell membranes
-
Gao W, Hu C-MJ, Fang RH, et al. Surface functionalization of gold nanoparticles with red blood cell membranes. Adv Mater 2013;25: 3549-53
-
(2013)
Adv Mater
, vol.25
, pp. 3549-3553
-
-
Gao, W.1
C-Mj, H.2
Fang, R.H.3
-
59
-
-
84908406318
-
Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy
-
Piao J-G, Wang L, Gao F, et al. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 2014;8:10414-25
-
(2014)
ACS Nano
, vol.8
, pp. 10414-10425
-
-
Piao, J.-G.1
Wang, L.2
Gao, F.3
-
60
-
-
84901660144
-
Core-shell supramolecular gelatin nanoparticles for adaptive and ''on-demand'' antibiotic delivery
-
Li L-L, Xu J-H, Qi G-B, et al. Core-shell supramolecular gelatin nanoparticles for adaptive and ''on-demand'' antibiotic delivery. ACS Nano 2014;8:4975-83
-
(2014)
ACS Nano
, vol.8
, pp. 4975-4983
-
-
Li, L.-L.1
Xu, J.-H.2
Qi, G.-B.3
-
61
-
-
84907270516
-
Clearance of pathological antibodies using biomimetic nanoparticles
-
Copp JA, Fang RH, Luk BT, et al. Clearance of pathological antibodies using biomimetic nanoparticles. Proc Natl Acad Sci USA 2014;111:13481-6
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 13481-13486
-
-
Copp, J.A.1
Fang, R.H.2
Luk, B.T.3
-
62
-
-
40649105534
-
Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers
-
Gu F, Zhang L, Teply BA, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA 2008;105:2586-91
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 2586-2591
-
-
Gu, F.1
Zhang, L.2
Teply, B.A.3
-
63
-
-
84890028543
-
Transepithelial transport of fctargeted nanoparticles by the neonatal fc receptor for oral delivery
-
article 213ra167
-
Pridgen EM, Alexis F, Kuo TT, et al. Transepithelial transport of fctargeted nanoparticles by the neonatal fc receptor for oral delivery. Sci Transl Med 2013;5:article 213ra167
-
(2013)
Sci Transl Med
, vol.5
-
-
Pridgen, E.M.1
Alexis, F.2
Kuo, T.T.3
-
64
-
-
84884267488
-
Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles
-
Fang RH, Hu C-MJ, Chen KNH, et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 2013;5:8884-8
-
(2013)
Nanoscale
, vol.5
, pp. 8884-8888
-
-
Fang, R.H.1
C-Mj, H.2
Knh, C.3
-
65
-
-
84897989669
-
Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery
-
Fang RH, Hu C-MJ, Luk BT, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 2014;14:2181-8
-
(2014)
Nano Lett
, vol.14
, pp. 2181-2188
-
-
Fang, R.H.1
C-Mj, H.2
Luk, B.T.3
-
66
-
-
0037423206
-
Mda-mb-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by thomsenfriedenreich antigen-galectin-3 interactions
-
Khaldoyanidi SK, Glinsky VV, Sikora L, et al. Mda-mb-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by thomsenfriedenreich antigen-galectin-3 interactions. J Biol Chem 2003; 278:4127-34
-
(2003)
J Biol Chem
, vol.278
, pp. 4127-4134
-
-
Khaldoyanidi, S.K.1
Glinsky, V.V.2
Sikora, L.3
-
67
-
-
0038418255
-
Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium
-
Glinsky VV, Glinsky GV, Glinskii OV, et al. Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res 2003;63:3805-11
-
(2003)
Cancer Res
, vol.63
, pp. 3805-3811
-
-
Glinsky, V.V.1
Glinsky, G.V.2
Glinskii, O.V.3
-
68
-
-
0041419656
-
Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+T cells
-
Overwijk WW, Theoret MR, Finkelstein SE, et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+T cells. J Exp Med 2003;198: 569-80
-
(2003)
J Exp Med
, vol.198
, pp. 569-580
-
-
Overwijk, W.W.1
Theoret, M.R.2
Finkelstein, S.E.3
-
69
-
-
84922810393
-
Modulating antibacterial immunity via bacterial membrane-coated nanoparticles
-
GaoW, Fang RH, Thamphiwatana S, et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett 2015;15:1403-9
-
(2015)
Nano Lett
, vol.15
, pp. 1403-1409
-
-
Gaow Fang, R.H.1
Thamphiwatana, S.2
-
70
-
-
80053161466
-
In situ engineering of the lymph node microenvironment via intranodal injection of adjuvantreleasing polymer particles
-
Jewell CM, Lopez SCB, Irvine DJ. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvantreleasing polymer particles. Proc Natl Acad Sci USA 2011;108: 15745-50
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 15745-15750
-
-
Jewell, C.M.1
Scb, L.2
Irvine, D.J.3
-
71
-
-
35148889797
-
Exploiting lymphatic transport and complement activation in nanoparticle vaccines
-
Reddy ST, van der Vlies AJ, Simeoni E, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 2007;25:1159-64
-
(2007)
Nat Biotechnol
, vol.25
, pp. 1159-1164
-
-
Reddy, S.T.1
Van Der Vlies, A.J.2
Simeoni, E.3
-
72
-
-
84897954314
-
Structure-based programming of lymph-node targeting in molecular vaccines
-
Liu H, Moynihan KD, Zheng Y, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 2014;507: 519-22
-
(2014)
Nature
, vol.507
, pp. 519-522
-
-
Liu, H.1
Moynihan, K.D.2
Zheng, Y.3
-
73
-
-
79951899834
-
Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses
-
Moon JJ, Suh H, Bershteyn A, et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat Mater 2011;10:243-51
-
(2011)
Nat Mater
, vol.10
, pp. 243-251
-
-
Moon, J.J.1
Suh, H.2
Bershteyn, A.3
-
74
-
-
84856387516
-
Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand t-fh cells and promote germinal center induction
-
Moon JJ, Suh H, Li AV, et al. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand t-fh cells and promote germinal center induction. Proc Natl Acad Sci USA 2012;109:1080-5
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 1080-1085
-
-
Moon, J.J.1
Suh, H.2
Li, A.V.3
-
75
-
-
84922679363
-
Nanotoxoid vaccines
-
Hu C-MJ, Zhang L. Nanotoxoid vaccines. Nano Today 2014;9: 401-4
-
(2014)
Nano Today
, vol.9
, pp. 401-404
-
-
C-Mj, H.1
Zhang, L.2
-
76
-
-
77956942671
-
Targeting of alpha-hemolysin by active or passive immunization decreases severity of usa300 skin infection in a mouse model
-
Kennedy AD, Wardenburg JB, Gardner DJ, et al. Targeting of alpha-hemolysin by active or passive immunization decreases severity of usa300 skin infection in a mouse model. J Infect Dis 2010;202:1050-8
-
(2010)
J Infect Dis
, vol.202
, pp. 1050-1058
-
-
Kennedy, A.D.1
Wardenburg, J.B.2
Gardner, D.J.3
-
77
-
-
79956192435
-
Expectations regarding vaccines and immune therapies directed against staphylococcus aureus alpha-hemolysin
-
Kernodle DS. Expectations regarding vaccines and immune therapies directed against staphylococcus aureus alpha-hemolysin. J Infect Dis 2011;203:1692-3
-
(2011)
J Infect Dis
, vol.203
, pp. 1692-1693
-
-
Kernodle, D.S.1
-
78
-
-
84908577324
-
Structural elucidation of cell membrane-derived nanoparticles using molecular probes
-
Fan Z, Zhou H, Li PY, et al. Structural elucidation of cell membrane-derived nanoparticles using molecular probes. J Mater Chem B 2014;2:8231-8
-
(2014)
J Mater Chem B
, vol.2
, pp. 8231-8238
-
-
Fan, Z.1
Zhou, H.2
Li, P.Y.3
-
79
-
-
84871730525
-
Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions
-
Parodi A, Quattrocchi N, van de Ven AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 2013;8: 61-8
-
(2013)
Nat Nanotechnol
, vol.8
, pp. 61-68
-
-
Parodi, A.1
Quattrocchi, N.2
Van De Ven, A.L.3
-
80
-
-
75749125021
-
Shiga toxins - From cell biology to biomedical applications
-
Johannes L, Roemer W. Shiga toxins - from cell biology to biomedical applications. Nat Rev Microbiol 2010;8: 105-16
-
(2010)
Nat Rev Microbiol
, vol.8
, pp. 105-116
-
-
Johannes, L.1
Roemer, W.2
-
81
-
-
84904510042
-
Botulinum neurotoxins: Genetic, structural and mechanistic insights
-
Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 2014;12:535-49
-
(2014)
Nat Rev Microbiol
, vol.12
, pp. 535-549
-
-
Rossetto, O.1
Pirazzini, M.2
Montecucco, C.3
|