-
1
-
-
80053639195
-
-
Bayesian Learning for Neural Networks, Ph.D. thesis, Dept. of Computer Science, University of Toronto
-
R. M. Neal, Bayesian Learning for Neural Networks, Ph.D. thesis, Dept. of Computer Science, University of Toronto, 1994.
-
(1994)
-
-
Neal, R.M.1
-
2
-
-
0028905904
-
Process analysis, monitoring and diagnosis, using multivariate projection methods
-
Kourti T., MacGregor J. Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemometrics and Intelligent Laboratory Systems 1995, 28:3-21.
-
(1995)
Chemometrics and Intelligent Laboratory Systems
, vol.28
, pp. 3-21
-
-
Kourti, T.1
MacGregor, J.2
-
3
-
-
0021427712
-
Principal variables
-
McCabe G.P. Principal variables. Technometrics 1984, 26:137-144.
-
(1984)
Technometrics
, vol.26
, pp. 137-144
-
-
McCabe, G.P.1
-
4
-
-
38549106577
-
State-specific key variables for monitoring multi-state processes
-
Srinivasan R., Qian M. State-specific key variables for monitoring multi-state processes. Chemical Engineering Research and Design 2007, 85:1630-1644.
-
(2007)
Chemical Engineering Research and Design
, vol.85
, pp. 1630-1644
-
-
Srinivasan, R.1
Qian, M.2
-
7
-
-
0036805513
-
Process analysis and abnormal situation detection: from theory to practice
-
Kourti T. Process analysis and abnormal situation detection: from theory to practice. Control Systems Magazine, IEEE 2002, 22:10-25.
-
(2002)
Control Systems Magazine, IEEE
, vol.22
, pp. 10-25
-
-
Kourti, T.1
-
8
-
-
0034253564
-
Multivariate statistical process control of an industrial fluidised-bed reactor
-
Simoglou A., Martin E.B., Morris A.J. Multivariate statistical process control of an industrial fluidised-bed reactor. Control Engineering Practice 2000, 8:893-909.
-
(2000)
Control Engineering Practice
, vol.8
, pp. 893-909
-
-
Simoglou, A.1
Martin, E.B.2
Morris, A.J.3
-
10
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf B., Smola A., Muller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 1998, 10:1299-1319.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Muller, K.R.3
-
11
-
-
11144331636
-
Fault detection and identification of nonlinear processes based on kernel PCA
-
Choi S.W., Lee C., Lee J.-M., Hyun Park J., Lee I.-B. Fault detection and identification of nonlinear processes based on kernel PCA. Chemometrics and Intelligent Laboratory Systems 2005, 75:55-67.
-
(2005)
Chemometrics and Intelligent Laboratory Systems
, vol.75
, pp. 55-67
-
-
Choi, S.W.1
Lee, C.2
Lee, J.-M.3
Hyun Park, J.4
Lee, I.-B.5
-
12
-
-
27844605876
-
Probabilistic non-linear principal component analysis with Gaussian process latent variable models
-
Lawrence N. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research 2005, 6:1783-1816.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1783-1816
-
-
Lawrence, N.1
-
13
-
-
0043015539
-
Nonlinear principal component analysis based on principal curves and neural networks
-
Dong D., McAvoy T. Nonlinear principal component analysis based on principal curves and neural networks. Computers and Chemical Engineering 1996, 20:65-78.
-
(1996)
Computers and Chemical Engineering
, vol.20
, pp. 65-78
-
-
Dong, D.1
McAvoy, T.2
-
14
-
-
0029322882
-
Reducing data dimensionality through optimizing neural network inputs
-
Tan S., Mavrovouniotis M.L. Reducing data dimensionality through optimizing neural network inputs. AIChE Journal 1995, 41:1471-1480.
-
(1995)
AIChE Journal
, vol.41
, pp. 1471-1480
-
-
Tan, S.1
Mavrovouniotis, M.L.2
-
15
-
-
0000588327
-
Non-linear principal components analysis for process fault detection
-
(European Symposium on Computer Aided Process Engineering-8)
-
Jia F., Martin E.B., Morris A.J. Non-linear principal components analysis for process fault detection. Computers & Chemical Engineering 1998, 22:S851-S854. (European Symposium on Computer Aided Process Engineering-8).
-
(1998)
Computers & Chemical Engineering
, vol.22
-
-
Jia, F.1
Martin, E.B.2
Morris, A.J.3
-
16
-
-
77952361709
-
Nonlinear probabilistic monitoring based on the Gaussian process latent variable model
-
Ge Z., Song Z. Nonlinear probabilistic monitoring based on the Gaussian process latent variable model. Industrial & Engineering Chemistry Research 2010, 49:4792-4799.
-
(2010)
Industrial & Engineering Chemistry Research
, vol.49
, pp. 4792-4799
-
-
Ge, Z.1
Song, Z.2
-
20
-
-
39449104740
-
Pattern Recognition and Machine Learning (Information Science and Statistics)
-
Bishop C.M. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer 2006.
-
(2006)
Springer
-
-
Bishop, C.M.1
-
22
-
-
0029252734
-
Multivariate SPC charts for monitoring batch processes
-
Nomikos P., MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 1995, 37:41-59.
-
(1995)
Technometrics
, vol.37
, pp. 41-59
-
-
Nomikos, P.1
MacGregor, J.F.2
-
23
-
-
40949103011
-
Nonlinear multiscale modelling for fault detection and identification
-
Choi S.W., Morris J., Lee I.-B. Nonlinear multiscale modelling for fault detection and identification. Chemical Engineering Science 2008, 63:2252-2266.
-
(2008)
Chemical Engineering Science
, vol.63
, pp. 2252-2266
-
-
Choi, S.W.1
Morris, J.2
Lee, I.-B.3
-
24
-
-
77956075435
-
Reconstruction-based contribution for process monitoring with kernel principal component analysis
-
Alcala C.F., Qin S.J. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Industrial & Engineering Chemistry Research 2010, 49:7849-7857.
-
(2010)
Industrial & Engineering Chemistry Research
, vol.49
, pp. 7849-7857
-
-
Alcala, C.F.1
Qin, S.J.2
-
25
-
-
0035427805
-
Fault diagnosis with multivariate statistical models, part I: using steady state fault signatures
-
Yoon S., MacGregor J.F. Fault diagnosis with multivariate statistical models, part I: using steady state fault signatures. Journal of Process Control 2001, 11:387-400.
-
(2001)
Journal of Process Control
, vol.11
, pp. 387-400
-
-
Yoon, S.1
MacGregor, J.F.2
-
26
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
Lee J.M., Yoo C.K., Choi S.W., Vanrolleghem P.A., Lee I.B. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science 2004, 59:223-234.
-
(2004)
Chemical Engineering Science
, vol.59
, pp. 223-234
-
-
Lee, J.M.1
Yoo, C.K.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.B.5
-
28
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Møller M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 1993, 6:525-533.
-
(1993)
Neural Networks
, vol.6
, pp. 525-533
-
-
Møller, M.F.1
-
29
-
-
4544294260
-
NETLAB: algorithms for pattern recognition
-
Springer-Verlag, London, Berlin, Heidelberg
-
Nabney I. NETLAB: algorithms for pattern recognition. Advances in Pattern Recognition 2002, Springer-Verlag, London, Berlin, Heidelberg.
-
(2002)
Advances in Pattern Recognition
-
-
Nabney, I.1
-
31
-
-
80053225881
-
Fast sparse Gaussian process methods: the informative vector machine
-
MIT Press, Cambridge, MA
-
Lawrence N.D., Seeger M., Herbrich R. Fast sparse Gaussian process methods: the informative vector machine. Advances in Neural Information Processing Systems 2003, volume 15:625-632. MIT Press, Cambridge, MA.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 625-632
-
-
Lawrence, N.D.1
Seeger, M.2
Herbrich, R.3
|