메뉴 건너뛰기




Volumn 109, Issue 1, 2011, Pages 9-21

Fault detection based on Gaussian process latent variable models

Author keywords

Gaussian process; Latent variable models; Multivariate statistical process control (MSPC); Process monitoring

Indexed keywords

ANALYTICAL ERROR; ARTICLE; ARTIFICIAL NEURAL NETWORK; CALCULATION; COMPUTER SIMULATION; GAUSSIAN PROCESS LATENT VARIABLE MODEL; KERNEL METHOD; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; NONLINEAR SYSTEM; NORMAL DISTRIBUTION; ONLINE SYSTEM; PREDICTION; PREDICTOR VARIABLE; PRIORITY JOURNAL; STRUCTURAL EQUATION MODELING;

EID: 80053639807     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2011.07.003     Document Type: Article
Times cited : (25)

References (31)
  • 1
    • 80053639195 scopus 로고
    • Bayesian Learning for Neural Networks, Ph.D. thesis, Dept. of Computer Science, University of Toronto
    • R. M. Neal, Bayesian Learning for Neural Networks, Ph.D. thesis, Dept. of Computer Science, University of Toronto, 1994.
    • (1994)
    • Neal, R.M.1
  • 2
    • 0028905904 scopus 로고
    • Process analysis, monitoring and diagnosis, using multivariate projection methods
    • Kourti T., MacGregor J. Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemometrics and Intelligent Laboratory Systems 1995, 28:3-21.
    • (1995) Chemometrics and Intelligent Laboratory Systems , vol.28 , pp. 3-21
    • Kourti, T.1    MacGregor, J.2
  • 3
    • 0021427712 scopus 로고
    • Principal variables
    • McCabe G.P. Principal variables. Technometrics 1984, 26:137-144.
    • (1984) Technometrics , vol.26 , pp. 137-144
    • McCabe, G.P.1
  • 4
    • 38549106577 scopus 로고    scopus 로고
    • State-specific key variables for monitoring multi-state processes
    • Srinivasan R., Qian M. State-specific key variables for monitoring multi-state processes. Chemical Engineering Research and Design 2007, 85:1630-1644.
    • (2007) Chemical Engineering Research and Design , vol.85 , pp. 1630-1644
    • Srinivasan, R.1    Qian, M.2
  • 7
    • 0036805513 scopus 로고    scopus 로고
    • Process analysis and abnormal situation detection: from theory to practice
    • Kourti T. Process analysis and abnormal situation detection: from theory to practice. Control Systems Magazine, IEEE 2002, 22:10-25.
    • (2002) Control Systems Magazine, IEEE , vol.22 , pp. 10-25
    • Kourti, T.1
  • 8
    • 0034253564 scopus 로고    scopus 로고
    • Multivariate statistical process control of an industrial fluidised-bed reactor
    • Simoglou A., Martin E.B., Morris A.J. Multivariate statistical process control of an industrial fluidised-bed reactor. Control Engineering Practice 2000, 8:893-909.
    • (2000) Control Engineering Practice , vol.8 , pp. 893-909
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3
  • 10
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A., Muller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 1998, 10:1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Muller, K.R.3
  • 12
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    • Lawrence N. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research 2005, 6:1783-1816.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.1
  • 13
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis based on principal curves and neural networks
    • Dong D., McAvoy T. Nonlinear principal component analysis based on principal curves and neural networks. Computers and Chemical Engineering 1996, 20:65-78.
    • (1996) Computers and Chemical Engineering , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.2
  • 14
    • 0029322882 scopus 로고
    • Reducing data dimensionality through optimizing neural network inputs
    • Tan S., Mavrovouniotis M.L. Reducing data dimensionality through optimizing neural network inputs. AIChE Journal 1995, 41:1471-1480.
    • (1995) AIChE Journal , vol.41 , pp. 1471-1480
    • Tan, S.1    Mavrovouniotis, M.L.2
  • 15
    • 0000588327 scopus 로고    scopus 로고
    • Non-linear principal components analysis for process fault detection
    • (European Symposium on Computer Aided Process Engineering-8)
    • Jia F., Martin E.B., Morris A.J. Non-linear principal components analysis for process fault detection. Computers & Chemical Engineering 1998, 22:S851-S854. (European Symposium on Computer Aided Process Engineering-8).
    • (1998) Computers & Chemical Engineering , vol.22
    • Jia, F.1    Martin, E.B.2    Morris, A.J.3
  • 16
    • 77952361709 scopus 로고    scopus 로고
    • Nonlinear probabilistic monitoring based on the Gaussian process latent variable model
    • Ge Z., Song Z. Nonlinear probabilistic monitoring based on the Gaussian process latent variable model. Industrial & Engineering Chemistry Research 2010, 49:4792-4799.
    • (2010) Industrial & Engineering Chemistry Research , vol.49 , pp. 4792-4799
    • Ge, Z.1    Song, Z.2
  • 20
    • 39449104740 scopus 로고    scopus 로고
    • Pattern Recognition and Machine Learning (Information Science and Statistics)
    • Bishop C.M. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer 2006.
    • (2006) Springer
    • Bishop, C.M.1
  • 22
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 1995, 37:41-59.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 23
    • 40949103011 scopus 로고    scopus 로고
    • Nonlinear multiscale modelling for fault detection and identification
    • Choi S.W., Morris J., Lee I.-B. Nonlinear multiscale modelling for fault detection and identification. Chemical Engineering Science 2008, 63:2252-2266.
    • (2008) Chemical Engineering Science , vol.63 , pp. 2252-2266
    • Choi, S.W.1    Morris, J.2    Lee, I.-B.3
  • 24
    • 77956075435 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring with kernel principal component analysis
    • Alcala C.F., Qin S.J. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Industrial & Engineering Chemistry Research 2010, 49:7849-7857.
    • (2010) Industrial & Engineering Chemistry Research , vol.49 , pp. 7849-7857
    • Alcala, C.F.1    Qin, S.J.2
  • 25
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models, part I: using steady state fault signatures
    • Yoon S., MacGregor J.F. Fault diagnosis with multivariate statistical models, part I: using steady state fault signatures. Journal of Process Control 2001, 11:387-400.
    • (2001) Journal of Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 28
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Møller M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 1993, 6:525-533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Møller, M.F.1
  • 29
    • 4544294260 scopus 로고    scopus 로고
    • NETLAB: algorithms for pattern recognition
    • Springer-Verlag, London, Berlin, Heidelberg
    • Nabney I. NETLAB: algorithms for pattern recognition. Advances in Pattern Recognition 2002, Springer-Verlag, London, Berlin, Heidelberg.
    • (2002) Advances in Pattern Recognition
    • Nabney, I.1
  • 31
    • 80053225881 scopus 로고    scopus 로고
    • Fast sparse Gaussian process methods: the informative vector machine
    • MIT Press, Cambridge, MA
    • Lawrence N.D., Seeger M., Herbrich R. Fast sparse Gaussian process methods: the informative vector machine. Advances in Neural Information Processing Systems 2003, volume 15:625-632. MIT Press, Cambridge, MA.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 625-632
    • Lawrence, N.D.1    Seeger, M.2    Herbrich, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.