메뉴 건너뛰기




Volumn 29, Issue 3, 2014, Pages 345-374

One-class classification: Taxonomy of study and review of techniques

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; RESEARCH;

EID: 84900011520     PISSN: 02698889     EISSN: 14698005     Source Type: Journal    
DOI: 10.1017/S026988891300043X     Document Type: Review
Times cited : (547)

References (185)
  • 1
  • 3
    • 40649093622 scopus 로고    scopus 로고
    • Implementing multi-class classifiers by one-class classification methods
    • Ban, T. & Abe, S. 2006. Implementing multi-class classifiers by one-class classification methods. In International Joint Conference on Neural Networks, 327-332
    • (2006) International Joint Conference on Neural Networks , pp. 327-332
    • Ban, T.1    Abe, S.2
  • 5
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E. & Kohavi, R. 1999. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36, 105-139
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 6
    • 67349162179 scopus 로고    scopus 로고
    • Combining different biometric traits with one-class classification
    • Bergamini, C., Koerich, A. L. & Sabourin, R. 2009. Combining different biometric traits with one-class classification. Signal Processing 89(11), 2117-2127
    • (2009) Signal Processing , vol.89 , Issue.11 , pp. 2117-2127
    • Bergamini, C.1    Koerich, A.L.2    Sabourin, R.3
  • 13
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Machine Learning 24, 123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 14
    • 57649224377 scopus 로고    scopus 로고
    • An evaluation of one-class classification techniques for speaker verification
    • Brew, A., Grimaldi, M. & Cunningham, P. 2007. An evaluation of one-class classification techniques for speaker verification. Artificial Intelligence Review 27(4), 295
    • (2007) Artificial Intelligence Review , vol.27 , Issue.4 , pp. 295
    • Brew, A.1    Grimaldi, M.2    Cunningham, P.3
  • 15
    • 48949112854 scopus 로고    scopus 로고
    • A novel method for one-class classification based on the nearest neighbor data description and structural risk minimization
    • Orlando, FL
    • Cabral, G. G., Oliveira, A. L. I. & Cahu, C. B. G. 2007. A novel method for one-class classification based on the nearest neighbor data description and structural risk minimization. In Proceedings of International Joint Conference on Neural Networks, Orlando, FL, 1976-1981
    • (2007) Proceedings of International Joint Conference on Neural Networks , pp. 1976-1981
    • Cabral, G.G.1    Oliveira, A.L.I.2    Cahu, C.B.G.3
  • 16
    • 59449093823 scopus 로고    scopus 로고
    • Combining nearest neighbor data description and structural risk minimization for one-class classification
    • Cabral, G. G., Oliveira, A. L. I. & Cahu, C. B. G. 2009. Combining nearest neighbor data description and structural risk minimization for one-class classification. Neural Computing and Applications 18(2), 175-183
    • (2009) Neural Computing and Applications , vol.18 , Issue.2 , pp. 175-183
    • Cabral, G.G.1    Oliveira, A.L.I.2    Cahu, C.B.G.3
  • 18
    • 35148869552 scopus 로고    scopus 로고
    • Learning bayesian classifiers from positive and unlabeled examples
    • Calvo, B., Larrañaga, P. & Lozano, J. A. 2007. Learning bayesian classifiers from positive and unlabeled examples. Pattern Recognition Letters 28(16), 2375-2384
    • (2007) Pattern Recognition Letters , vol.28 , Issue.16 , pp. 2375-2384
    • Calvo, B.1    Larrañaga, P.2    Lozano, J.A.3
  • 19
    • 84898950762 scopus 로고    scopus 로고
    • A linear programming approach to novelty detection
    • Leen, T. K., Dietterich, T. D. & Tresp, V. (eds MIT Press 14. Cambridge, M.A.
    • Campbell, C. & Bennett, K. P. 2001. A linear programming approach to novelty detection. In Advances in Neural Information Processing, Leen, T. K., Dietterich, T. D. & Tresp, V. (eds). MIT Press, 14. Cambridge, M.A.
    • (2001) Advances in Neural Information Processing
    • Campbell, C.1    Bennett, K.P.2
  • 20
    • 77951774810 scopus 로고    scopus 로고
    • Learning gene regulatory networks from only positive and unlabeled data
    • Cerulo, L., Elkan, C. & Ceccarelli, M. 2010. Learning gene regulatory networks from only positive and unlabeled data. BMC Bioinformatics 11, 228
    • (2010) BMC Bioinformatics , vol.11 , pp. 228
    • Cerulo, L.1    Elkan, C.2    Ceccarelli, M.3
  • 22
    • 0037511417 scopus 로고    scopus 로고
    • A new method for fMRI data processing: Neighborhood independent component correlation algorithm and its preliminary application
    • Chen, H. F., Yao, D. Z., Becker, S., Zhou, Y., Zeng, M. & Chen, L. 2002. A new method for fMRI data processing: Neighborhood independent component correlation algorithm and its preliminary application. Science in China Series F 45(5), 373-382
    • (2002) Science in China Series F , vol.45 , Issue.5 , pp. 373-382
    • Chen, H.F.1    Yao, D.Z.2    Becker, S.3    Zhou, Y.4    Zeng, M.5    Chen, L.6
  • 23
    • 30944456721 scopus 로고    scopus 로고
    • Survey of preference elicitation methods
    • EPFL
    • Chen, L. & Pu, P. 2004. Survey of Preference Elicitation Methods. Technical report, EPFL
    • (2004) Technical report
    • Chen, L.1    Pu, P.2
  • 25
    • 80052979522 scopus 로고    scopus 로고
    • Pruned random subspace method for one-class classifiers
    • Sansone, C., Kittler, J. & Roli, F. (eds). MCS 2011, Lecture Notes in Computer Science Springer
    • Cheplygina, V. & Tax, D. M. J. 2011. Pruned random subspace method for one-class classifiers. In 10th International Workshop, Sansone, C., Kittler, J. & Roli, F. (eds). MCS 2011, Lecture Notes in Computer Science 6713, 96-105. Springer
    • (2011) 10th International Workshop , vol.6713 , pp. 96-105
    • Cheplygina, V.1    Tax, D.M.J.2
  • 26
    • 35048892584 scopus 로고    scopus 로고
    • Video summarization using fuzzy one-class support vector machine
    • Laganà, A., Gavrilova M. L., Kumar, V., Mun, Y., Tan, C. J. K. & Gervasi, O. (eds 3043. Springer-Verlag
    • Choi, Y. S. & Kim, K. J. 2004. Video summarization using fuzzy one-class support vector machine. In Lecture Notes in Computer Science, Laganà, A., Gavrilova, M. L., Kumar, V., Mun, Y., Tan, C. J. K. & Gervasi, O. (eds). 3043, 49-56. Springer-Verlag
    • (2004) Lecture Notes in Computer Science , pp. 49-56
    • Choi, Y.S.1    Kim, K.J.2
  • 31
    • 84961317343 scopus 로고    scopus 로고
    • PAC learning from positive statistical queries
    • Richter M. M., Smith, C. H., Wiehagen, R. & Zeugmann, T. (eds). Springer-Verlag
    • Denis, F. 1998. PAC learning from positive statistical queries. In Proceedings of the 9th International Conference on Algorithmic Learning Theory, Richter, M. M., Smith, C. H., Wiehagen, R. & Zeugmann, T. (eds). Springer-Verlag, 112-126
    • (1998) Proceedings of the 9th International Conference on Algorithmic Learning Theory , pp. 112-126
    • Denis, F.1
  • 34
    • 84870021480 scopus 로고    scopus 로고
    • A random forest based approach for one class classification in medical imaging
    • Wang, F., Shen, D., Yan, P. & Suzuki, K. (eds). Lecture Notes in Computer Science Springer
    • Désir, C., Bernard, S., Petitjean, C. & Heutte, L. 2012. A random forest based approach for one class classification in medical imaging. In Machine Learning in Medical Imaging, Wang, F., Shen, D., Yan, P. & Suzuki, K. (eds). Lecture Notes in Computer Science 7588, 250-257. Springer
    • (2012) Machine Learning in Medical Imaging , vol.7588 , pp. 250-257
    • Désir, C.1    Bernard, S.2    Petitjean, C.3    Heutte, L.4
  • 38
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees, bagging, boosting and randomization
    • Dietterich, T. G. 2000. An experimental comparison of three methods for constructing ensembles of decision trees, bagging, boosting and randomization. Machine Learning 40(2), 139-157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 41
    • 84864047471 scopus 로고    scopus 로고
    • Optimal single-class classification strategies-google scholar
    • Schölkopf, B., Platt, J. C. & Hoffman, T. (eds 19. MIT Press
    • El-Yaniv, R. & Nisenson, M. 2006. Optimal single-class classification strategies-google scholar. In Proceedings of the 2006 NIPS Conference, Schölkopf, B., Platt, J. C. & Hoffman, T. (eds). 19. MIT Press, 377-384
    • (2006) Proceedings of the 2006 NIPS Conference , pp. 377-384
    • El-Yaniv, R.1    Nisenson, M.2
  • 44
    • 26444600828 scopus 로고    scopus 로고
    • Combining one-class classifiers for robust novelty detection in gene expression data
    • Ferreira De Carvalho, A. C. P. L. 2005. Combining one-class classifiers for robust novelty detection in gene expression data. In Brazilian Symposium on Bioinformatics, 54-64
    • (2005) Brazilian Symposium on Bioinformatics , pp. 54-64
    • Ferreira De Carvalho, A.C.P.L.1
  • 48
    • 58149507989 scopus 로고    scopus 로고
    • A multi-layer method to study genome-scale positions of nucleosomes
    • Gesù, V. D., Bosco, G. L., Pinello, L., Yuan, G. C. & Corona, D. F. V. 2009. A multi-layer method to study genome-scale positions of nucleosomes. Genomics 930(2), 140-145
    • (2009) Genomics , vol.930 , Issue.2 , pp. 140-145
    • Gesù, V.D.1    Bosco, G.L.2    Pinello, L.3    Yuan, G.C.4    Corona, D.F.V.5
  • 49
    • 33745149379 scopus 로고    scopus 로고
    • Network intrusion detection by combining one-class classifiers
    • Roli, F. & Vitulano, S. (eds). Lecture Notes in Computer Science Springer
    • Giacinto, G., Perdisci, R. & Roli, F. 2005. Network intrusion detection by combining one-class classifiers. In Image Analysis and Processing-ICIAP 2005, Roli, F. & Vitulano, S. (eds). Lecture Notes in Computer Science 3617, 58-65. Springer
    • (2005) Image Analysis and Processing-ICIAP 2005 , vol.3617 , pp. 58-65
    • Giacinto, G.1    Perdisci, R.2    Roli, F.3
  • 50
    • 84860465412 scopus 로고    scopus 로고
    • Analysis of the effect of unexpected outliers in the classification of spectroscopy data
    • Dublin
    • Glavin, F. G. & Madden, M. G. 2009. Analysis of the effect of unexpected outliers in the classification of spectroscopy data. In Artificial Intelligence and Cognitive Science 2009, Dublin
    • (2009) Artificial Intelligence and Cognitive Science , vol.2009
    • Glavin, F.G.1    Madden, M.G.2
  • 51
    • 3142679461 scopus 로고    scopus 로고
    • Improving image retrieval performance by inter-query learning with one-class support vector machines
    • Gondra, I., Heisterkamp, D. R. & Peng, J. 2004. Improving image retrieval performance by inter-query learning with one-class support vector machines. Neural Computation and Applications 13, 130-139
    • (2004) Neural Computation and Applications , vol.13 , pp. 130-139
    • Gondra, I.1    Heisterkamp, D.R.2    Peng, J.3
  • 52
    • 46849083316 scopus 로고    scopus 로고
    • Fuzzy one-class support vector machines
    • Hao, P. Y. 2008. Fuzzy one-class support vector machines. Fuzzy Sets and Systems 159, 2317-2336
    • (2008) Fuzzy Sets and Systems , vol.159 , pp. 2317-2336
    • Hao, P.Y.1
  • 53
    • 77951900148 scopus 로고    scopus 로고
    • Identification of egg freshness using near infrared spectroscopy and one class support vector machine algorithm
    • Hao, L., Wen, Z. J., Sheng, C. Q., Rong, C. J. & Ping, Z. 2010. Identification of egg freshness using near infrared spectroscopy and one class support vector machine algorithm. Spectroscopy and Spectral Analysis 30(4), 929-932
    • (2010) Spectroscopy and Spectral Analysis , vol.30 , Issue.4 , pp. 929-932
    • Hao, L.1    Wen, Z.J.2    Sheng, C.Q.3    Rong, C.J.4    Ping, Z.5
  • 55
    • 85011019920 scopus 로고    scopus 로고
    • One-class machine learning approach for fMRI analysis
    • Photonics, Communications and Networks, and Computer Science, Lancaster
    • Hardoon, D. R. & Manevitz, L. M. 2005b. One-class machine learning approach for fMRI analysis. In In Postgraduate Research Conference in Electronics, Photonics, Communications and Networks, and Computer Science, Lancaster
    • (2005) Postgraduate Research Conference in Electronics
    • Hardoon, D.R.1    Manevitz, L.M.2
  • 60
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho, T. K. 1998. The random subspace method for constructing decision forests. IEEE Trans. Pattern Analysis and Machine Intelligence, 200(8): 832-844
    • (1998) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.200 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 63
    • 35048859747 scopus 로고    scopus 로고
    • Combining one-class classifiers to classify missing data
    • Roli, F., Kittler, J. & Windeatt, T. (eds). Springer-Verlag
    • Juszczak, P. & Duin, R. P. W. 2004. Combining one-class classifiers to classify missing data. In Proceedings of the 5th International Workshop MCS, Roli, F., Kittler, J. & Windeatt, T. (eds). Springer-Verlag, 3077, 92-101
    • (2004) Proceedings of the 5th International Workshop MCS , vol.3077 , pp. 92-101
    • Juszczak, P.1    Duin, R.P.W.2
  • 64
    • 61849121774 scopus 로고    scopus 로고
    • Minimum spanning tree based one-class classifier
    • Juszczak, P., Tax, D. M. J., Pȩkalska, E. & Duin, R. P. W. 2009. Minimum spanning tree based one-class classifier. Neurocomputing 72(7-9), 1859-1869
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1859-1869
    • Juszczak, P.1    Tax, D.M.J.2    Pȩkalska, E.3    Duin, R.P.W.4
  • 67
    • 84861758262 scopus 로고    scopus 로고
    • Bayesian multiple imputation approaches for one-class classification-springer
    • Kosseim L. & Inkpen, D. (eds). Springer, Toronto
    • Khan, S. S., Hoey, J. & Lizotte, D. 2012a. Bayesian multiple imputation approaches for one-class classification-springer. In Proceedings Advances in Artificial Intelligence, Kosseim, L. & Inkpen, D. (eds). Springer, Toronto, 7310, 331-336
    • (2012) Proceedings Advances in Artificial Intelligence , vol.7310 , pp. 331-336
    • Khan, S.S.1    Hoey, J.2    Lizotte, D.3
  • 68
    • 84879485469 scopus 로고    scopus 로고
    • Towards the detection of unusual temporal events during activities using HMMs
    • Dey, A. K., Chu, H-H. & Hayes, G. R. (eds). UbiComp '12, ACM. New York, NY, USA
    • Khan, S. S., Karg, M. E., Hoey, J. & Kulic, D. 2012b. Towards the detection of unusual temporal events during activities using HMMs. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Dey, A. K., Chu, H-H. & Hayes, G. R. (eds). UbiComp '12, ACM, 1075-1084. New York, NY, USA
    • (2012) Proceedings of the 2012 ACM Conference on Ubiquitous Computing , pp. 1075-1084
    • Khan, S.S.1    Karg, M.E.2    Hoey, J.3    Kulic, D.4
  • 70
    • 78650080782 scopus 로고    scopus 로고
    • A survey of recent trends in one class classification
    • Coyle L. & Freyne, J. (eds 6206, Springer-Verlag
    • Khan, S. S. & Madden, M. G. 2009. A survey of recent trends in one class classification. In Lecture Notes in Artificial Intelligence, Coyle, L. & Freyne, J. (eds). 6206, 181-190, Springer-Verlag
    • (2009) Lecture Notes in Artificial Intelligence , pp. 181-190
    • Khan, S.S.1    Madden, M.G.2
  • 79
    • 77949543086 scopus 로고    scopus 로고
    • Cost-sensitive learning
    • Sammut C. & Webb, G. I. (eds Springer
    • Ling, C. X. & Sheng, V. S. 2010. Cost-sensitive learning. In Encyclopedia of Machine Learning, Sammut, C. & Webb, G. I. (eds). Springer, 231-235
    • (2010) Encyclopedia of Machine Learning , pp. 231-235
    • Ling, C.X.1    Sheng, V.S.2
  • 84
    • 70450048040 scopus 로고    scopus 로고
    • OcVFDT: One-class very fast decision tree for one-class classification of data streams
    • Omitaomu, O. A., Ganguly, A. R., Gama, J., Vatsavai, R. R., Chawla, N. V. & Gaber, M. M. (eds). SensorKDD '09 ACM New York, NY, USA
    • Li, C., Zhang, Y. & Li, X. 2009. OcVFDT: One-class very fast decision tree for one-class classification of data streams. In Proceedings of the 3rd International Workshop on Knowledge Discovery from Sensor Data, Omitaomu, O. A., Ganguly, A. R., Gama, J., Vatsavai, R. R., Chawla, N. V. & Gaber, M. M. (eds). SensorKDD '09, ACM, 79-86. New York, NY, USA
    • (2009) Proceedings of the 3rd International Workshop on Knowledge Discovery from Sensor Data , pp. 79-86
    • Li, C.1    Zhang, Y.2    Li, X.3
  • 86
    • 79151485529 scopus 로고    scopus 로고
    • A positive and unlabeled learning algorithm for one-class classification of remote-sensing data
    • Li, W., Guo, Q. & Elkan, C. 2011. A positive and unlabeled learning algorithm for one-class classification of remote-sensing data. IEEE Transactions on Geoscience and Remote Sensing 49(2), 717-725
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , Issue.2 , pp. 717-725
    • Li, W.1    Guo, Q.2    Elkan, C.3
  • 90
    • 8844256156 scopus 로고    scopus 로고
    • Steganalysis using color wavelet statistics and one class support vector machines
    • San Jose, USA
    • Lyu, S. & Farid, H. 2004. Steganalysis using color wavelet statistics and one class support vector machines. In Proceedings of SPIE 5306, 35-45, San Jose, USA
    • (2004) Proceedings of SPIE , vol.5306 , pp. 35-45
    • Lyu, S.1    Farid, H.2
  • 95
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review-part 1: Statistical approaches
    • Markou, M. & Singh, S. 2003a. Novelty detection: A review-part 1: Statistical approaches. Signal Processing 83(12), 2481-2497
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 96
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review-part 2: Neural networks based approaches
    • Markou, M. & Singh, S. 2003b. Novelty detection: A review-part 2: Neural networks based approaches. Signal Processing 83(12), 2499-2521
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 99
    • 0010142578 scopus 로고
    • One-class classifier networks for target recognition applications
    • Portland, O.R.
    • Moya, M. R., Koch, M. W. & Hostetler, L. D. 1993. One-class classifier networks for target recognition applications. In International Neural Network Society, 797-801, Portland, O.R.
    • (1993) International Neural Network Society , pp. 797-801
    • Moya, M.R.1    Koch, M.W.2    Hostetler, L.D.3
  • 103
    • 32544454675 scopus 로고    scopus 로고
    • Experimental comparison of one-class classifiers for online signature verification
    • Nanni, L. 2006. Experimental comparison of one-class classifiers for online signature verification. Neurocomputing 69, 869-873
    • (2006) Neurocomputing , vol.69 , pp. 869-873
    • Nanni, L.1
  • 104
    • 33744944979 scopus 로고    scopus 로고
    • An application of support vector machines to anomaly detection
    • Ohio University
    • Nguyen, B. V. 2002. An application of support vector machines to anomaly detection. Technical Report CS681, Ohio University
    • (2002) Technical Report CS681
    • Nguyen, B.V.1
  • 105
    • 78650824981 scopus 로고    scopus 로고
    • Learning pattern classification tasks with imbalanced data sets
    • Peng-Yeng Yin (ed.). InTech
    • Nguyen, H., Abdesselam Bouzerdoum, Giang. & Son, L. Phung 2009. Learning pattern classification tasks with imbalanced data sets. In Pattern Recognition, Peng-Yeng Yin (ed.). InTech
    • (2009) Pattern Recognition
    • Nguyen, H.1    Abdesselam Bouzerdoum, G.2    Son, L.P.3
  • 107
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam, K., McCallum, A., Thrun, S. & Mitchell, T. 2000. Text classification from labeled and unlabeled documents using EM. Machine Learning 39(2/3), 103-134
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 110
    • 84900000441 scopus 로고    scopus 로고
    • Nearest neighbor algorithm for positive and unlabeled learning with uncertainty
    • Pan, S., Zhang, Y., Li, X. & Wang, Y. 2010. Nearest neighbor algorithm for positive and unlabeled learning with uncertainty. Journal of Computer Science and Frontiers 4(9), 766-779
    • (2010) Journal of Computer Science and Frontiers , vol.4 , Issue.9 , pp. 766-779
    • Pan, S.1    Zhang, Y.2    Li, X.3    Wang, Y.4
  • 112
    • 10044279817 scopus 로고    scopus 로고
    • One-class LP classifiers for dissimilarity representations
    • Becker, S., Thrun, S. & Obermayer, K. (eds MIT Press, British Columbia, Canada
    • Pȩkalska, E., Tax, D. M. J. & Duin, R. P. W. 2002. One-class LP classifiers for dissimilarity representations. In Advances in Neural Info. Processing Systems, Becker, S., Thrun, S. & Obermayer, K. (eds). 15. MIT Press, 761-768, British Columbia, Canada
    • (2002) Advances in Neural Info. Processing Systems , vol.15 , pp. 761-768
    • Pȩkalska, E.1    Tax, D.M.J.2    Duin, R.P.W.3
  • 113
    • 84882385710 scopus 로고    scopus 로고
    • Text classification from positive and unlabeled documents based on GA
    • Brazil
    • Peng, T., Zuo, W. & He, F. 2006. Text classification from positive and unlabeled documents based on GA. In Proceedings of VECPAR'06, Brazil
    • (2006) Proceedings of VECPAR'06
    • Peng, T.1    Zuo, W.2    He, F.3
  • 114
    • 60349101742 scopus 로고    scopus 로고
    • Using an ensemble of one-class SVM classifiers to harden payload-based anomaly detection systems
    • IEEE Computer Society
    • Perdisci, R., Gu, G. & Lee, W. 2006. Using an ensemble of one-class SVM classifiers to harden payload-based anomaly detection systems. In Proceedings of the 16th International Conference on Data Mining. IEEE Computer Society, 488-498
    • (2006) Proceedings of the 16th International Conference on Data Mining , pp. 488-498
    • Perdisci, R.1    Gu, G.2    Lee, W.3
  • 120
    • 0031169206 scopus 로고    scopus 로고
    • Outliers in statistical pattern recognition and an application to automatic chromosome classification
    • Ritter, G. & Gallegos, M. 1997. Outliers in statistical pattern recognition and an application to automatic chromosome classification. Pattern Recognition Letters 18, 525-539
    • (1997) Pattern Recognition Letters , vol.18 , pp. 525-539
    • Ritter, G.1    Gallegos, M.2
  • 122
    • 36048970091 scopus 로고    scopus 로고
    • Steganography anomaly detection using simple one-class classification
    • Rodriguez, B. M., Peterson, G. L. & Agaian, S. S. 2007. Steganography anomaly detection using simple one-class classification. In Proceddings of the SPIE, 6579, page 65790E.
    • (2007) Proceddings of the SPIE , vol.6579
    • Rodriguez, B.M.1    Peterson, G.L.2    Agaian, S.S.3
  • 125
    • 84900033924 scopus 로고    scopus 로고
    • One-class support vector machines for the classification of bioacoustic time series
    • Cairo
    • Sachs, A., Thiel, C. & Schwenker, F. 2006. One-class support vector machines for the classification of bioacoustic time series. In INFOS'06, Cairo
    • (2006) INFOS'06
    • Sachs, A.1    Thiel, C.2    Schwenker, F.3
  • 127
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R. E., Feund, Y., Bartlett, P. L. & Lee, W. S. 1998. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics 26(5), 1651-1686
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Feund, Y.2    Bartlett, P.L.3    Lee, W.S.4
  • 128
    • 26444597997 scopus 로고    scopus 로고
    • Learning to filter junk e-mail from positive and unlabeled examples
    • Su, K-Y., Tsujii, J., Lee, J-H. & Kwong, O. Y. (eds Springer
    • Schneider, K. M. 2004. Learning to filter junk e-mail from positive and unlabeled examples. In Lecture Notes in Computer Science, Su, K-Y., Tsujii, J., Lee, J-H. & Kwong, O. Y. (eds). 3248, 426-435. Springer
    • (2004) Lecture Notes in Computer Science , vol.3248 , pp. 426-435
    • Schneider, K.M.1
  • 130
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A. J. & Müller, K. R. 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299-1319
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.R.3
  • 133
    • 77952066514 scopus 로고    scopus 로고
    • Weighted bagging for graph based one-class classifiers
    • Neamat Gayar, Josef Kittler, & Fabio Roli, (eds Springer
    • Seguì, S., Igual, L. & Vitrià, J. 2010. Weighted bagging for graph based one-class classifiers. In Multiple Classifier Systems, Neamat Gayar, Josef Kittler, & Fabio Roli, (eds). Springer, 5997, 1-10
    • (2010) Multiple Classifier Systems , vol.5997 , pp. 1-10
    • Seguì, S.1    Igual, L.2    Vitrià, J.3
  • 134
    • 33846420617 scopus 로고    scopus 로고
    • An application of one-class support vector machines in content based image retrieval
    • Seo, K. 2007. An application of one-class support vector machines in content based image retrieval. Expert Systems with Applications 33(2), 491-498
    • (2007) Expert Systems with Applications , vol.33 , Issue.2 , pp. 491-498
    • Seo, K.1
  • 135
    • 0042215356 scopus 로고
    • How to improve the reliability of artificial neural networks
    • Department of Computer Science, University of Sheffield
    • Sharkey, A. J. C. & Sharkey, N. E. 1995. How to improve the reliability of artificial neural networks. Technical Report CS-95-11, Department of Computer Science, University of Sheffield
    • (1995) Technical Report CS 95-11
    • Sharkey, A.J.C.1    Sharkey, N.E.2
  • 136
    • 70349303511 scopus 로고    scopus 로고
    • Ensembles of one class support vector machines
    • Benediktsson, J., Kittler, J. & Roli, F. (eds. Springer Verlag
    • Shieh, A. D. & Kamm, D. F. 2009. Ensembles of one class support vector machines. In Lecture Notes in Computer Science, Benediktsson, J., Kittler, J. & Roli, F. (eds). 5519, 181-190. Springer-Verlag
    • (2009) Lecture Notes in Computer Science , vol.5519 , pp. 181-190
    • Shieh, A.D.1    Kamm, D.F.2
  • 137
    • 14044252742 scopus 로고    scopus 로고
    • One-class support vector machines: An application in machine fault detection and classification
    • Shin, H. J., Eom, D. W. & Kim, S. S. 2005. One-class support vector machines: An application in machine fault detection and classification. Computers and Industrial Engineering 48(2), 395-408
    • (2005) Computers and Industrial Engineering , vol.48 , Issue.2 , pp. 395-408
    • Shin, H.J.1    Eom, D.W.2    Kim, S.S.3
  • 139
    • 1542315535 scopus 로고    scopus 로고
    • Single-class classifier learning using neural networks: An application to the prediction of mineral deposits
    • China
    • Skabar, A. 2003. Single-class classifier learning using neural networks: An application to the prediction of mineral deposits. In Proceedings of the Second International Conference on Machine Learning and Cybernetics, 4, 2127-2132, China
    • (2003) Proceedings of the Second International Conference on Machine Learning and Cybernetics , vol.4 , pp. 2127-2132
    • Skabar, A.1
  • 142
    • 27944477824 scopus 로고    scopus 로고
    • A novel method for Chinese spam detection based on one-class support vector machine
    • Sun, D., Tran, Q. A., Duan, H. & Zhang, G. 2005. A novel method for Chinese spam detection based on one-class support vector machine. Journal of Information and Computational Science 2(1), 109-114
    • (2005) Journal of Information and Computational Science , vol.2 , Issue.1 , pp. 109-114
    • Sun, D.1    Tran, Q.A.2    Duan, H.3    Zhang, G.4
  • 143
    • 26944460779 scopus 로고    scopus 로고
    • One-class classifier for HFGWR ship detection using similarity- dissimilarity representation
    • Ali M. & Esposito, F. (eds). Springer Verlag, Italy
    • Tang, Y. & Yang, Z. 2005. One-class classifier for HFGWR ship detection using similarity-dissimilarity representation. In Proceedings of the 18th International Conference on Innovations in Applied Artificial Intelligence, Ali, M. & Esposito, F. (eds). Springer-Verlag, Italy, 432-441
    • (2005) Proceedings of the 18th International Conference on Innovations in Applied Artificial Intelligence , pp. 432-441
    • Tang, Y.1    Yang, Z.2
  • 144
    • 0000078841 scopus 로고    scopus 로고
    • Averaging regularized estimators
    • Tanigushi, M. & Tresp, V. 1997. Averaging regularized estimators. Neural Computation 9, 1163-1178
    • (1997) Neural Computation , vol.9 , pp. 1163-1178
    • Tanigushi, M.1    Tresp, V.2
  • 145
    • 0037753593 scopus 로고    scopus 로고
    • PhD thesis Delft University of Technology
    • Tax, D. M. J. 2001. One-class Classification. PhD thesis, Delft University of Technology
    • (2001) One-class Classification
    • Tax, D.M.J.1
  • 150
    • 0013372968 scopus 로고    scopus 로고
    • Uniform object generation for optimizing one-class classifiers
    • Tax, D. M. J. & Duin, R. P. W. 2001b. Uniform object generation for optimizing one-class classifiers. Journal of Machine Learning Research 2, 155-173
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 155-173
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 151
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D. M. J. & Duin, R. P. W. 2004. Support vector data description. Machine Learning 54(1), 45-66
    • (2004) Machine Learning , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 153
    • 77954349641 scopus 로고    scopus 로고
    • Anomaly detection combining one-class SVMs and particle swarm optimization algorithms
    • Tian, J. & Gu, H. 2010. Anomaly detection combining one-class SVMs and particle swarm optimization algorithms. Nonlinear Dynamics 61(1-2), 303-310
    • (2010) Nonlinear Dynamics , vol.61 , Issue.1-2 , pp. 303-310
    • Tian, J.1    Gu, H.2
  • 155
    • 33749387637 scopus 로고    scopus 로고
    • Integrating local one-class classifiers for image retrieval
    • X. Li, O. R. Zaïane, & Z. H. Li (eds Springer, 4093
    • Tu, Y., Li, G. & Dai, H. 2006. Integrating local one-class classifiers for image retrieval. In Advanced Data Mining and Applications, X. Li, O. R. Zaïane, & Z. H. Li (eds), Springer, 4093, 213-222
    • (2006) Advanced Data Mining and Applications , pp. 213-222
    • Tu, Y.1    Li, G.2    Dai, H.3
  • 156
    • 0021518106 scopus 로고
    • A theory of learnable
    • Valiant, L. G. 1984. A theory of learnable. Coomunications of the ACM 270(11), 1134-1142
    • (1984) Coomunications of the ACM , vol.270 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 157
    • 57649171566 scopus 로고    scopus 로고
    • An evaluation of dimension reduction techniques for one-class classification
    • Villalba, S. D. & Cunningham, P. 2007. An evaluation of dimension reduction techniques for one-class classification. Artificial Intelligence Review 270(4), 273-294
    • (2007) Artificial Intelligence Review , vol.270 , Issue.4 , pp. 273-294
    • Villalba, S.D.1    Cunningham, P.2
  • 158
    • 33750416896 scopus 로고    scopus 로고
    • PSoL: A positive sample only learning algorithm for finding non-coding RNA genes
    • Wang, C., Ding, C., Meraz, R. F. & Holbrook, S. R. 2006. PSoL: A positive sample only learning algorithm for finding non-coding RNA genes. BioInformatics 22(21), 2590-2596
    • (2006) BioInformatics , vol.22 , Issue.21 , pp. 2590-2596
    • Wang, C.1    Ding, C.2    Meraz, R.F.3    Holbrook, S.R.4
  • 160
    • 35048885031 scopus 로고    scopus 로고
    • Visual object recognition through one-class learning
    • Campilho, A. C. & Kamel, M. S. (eds). Lecture Notes in Computer Science 3211 Springer
    • Wang, Q. H., Lopes, L. S. & Tax, D. M. J. 2004. Visual object recognition through one-class learning. In Image Analysis and Recognition, Campilho, A. C. & Kamel, M. S. (eds). Lecture Notes in Computer Science 3211, 463-470. Springer
    • (2004) Image Analysis and Recognition , pp. 463-470
    • Wang, Q.H.1    Lopes, L.S.2    Tax, D.M.J.3
  • 161
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. 1992. Stacked generalization. Neural Networks 5, 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 163
    • 64149114549 scopus 로고    scopus 로고
    • SVM-Based data editing for enhanced one-class classification of remotely sensed imagery
    • Xiaomu, S., Guoliang, F. & Rao, M. 2008. SVM-Based data editing for enhanced one-class classification of remotely sensed imagery. IEEE Geoscience and Remote Sensing Letters 5, 189-193
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , pp. 189-193
    • Xiaomu, S.1    Guoliang, F.2    Rao, M.3
  • 164
    • 34248164472 scopus 로고    scopus 로고
    • Automated single-nucleotide polymorphism analysis using fluorescence excitation-emission spectroscopy and one-class classifiers
    • Xu, Y. & Brereton, R. G. 2007. Automated single-nucleotide polymorphism analysis using fluorescence excitation-emission spectroscopy and one-class classifiers. Analytical and Bioanalytical Chemistry 388(3), 655-664
    • (2007) Analytical and Bioanalytical Chemistry , vol.388 , Issue.3 , pp. 655-664
    • Xu, Y.1    Brereton, R.G.2
  • 165
    • 84959907539 scopus 로고    scopus 로고
    • One-class support vector machine calibration using particle swarm optimisation
    • Dublin
    • Yang, L. & Madden, M. G. 2007. One-class support vector machine calibration using particle swarm optimisation. In AICS 2007, Dublin
    • (2007) AICS , vol.2007
    • Yang, L.1    Madden, M.G.2
  • 168
    • 33745801116 scopus 로고    scopus 로고
    • One-class support vector machines for recommendation tasks
    • Ng, W. K., Kitsuregawa M. Li, J. & Chang, K. (eds). 3918. Springer, Singapore
    • Yasutoshi, Y. 2006. One-class support vector machines for recommendation tasks. In PKDD, Ng, W. K., Kitsuregawa, M., Li, J. & Chang, K. (eds). 3918. Springer, Singapore, 230-239
    • (2006) PKDD , pp. 230-239
    • Yasutoshi, Y.1
  • 169
    • 24944438717 scopus 로고    scopus 로고
    • Leveraging one-class SVM and semantic analysis to detect anomalous content
    • Kantor, P. B., Muresan, G., Roberts, F. S., Zeng D. D., Wang, F-Y., Chen, H. & Merkle, R. C. (eds Springer
    • Yilmazel, O., Symonenko, S., Balasubramanian, N. & Liddy, E. D. 2005. Leveraging one-class SVM and semantic analysis to detect anomalous content. In IEEE International Conference on Intelligence and Security Informatics, Kantor, P. B., Muresan, G., Roberts, F. S., Zeng, D. D., Wang, F-Y., Chen, H. & Merkle, R. C. (eds). 3495, Springer, 381-388
    • (2005) IEEE International Conference on Intelligence and Security Informatics , vol.3495 , pp. 381-388
    • Yilmazel, O.1    Symonenko, S.2    Balasubramanian, N.3    Liddy, E.D.4
  • 170
    • 43949125230 scopus 로고    scopus 로고
    • Learning from positives examples when the negative class is undermined-microRNA gene identification
    • Yousef, M., Jung, S., Showe, L.C. & Showe, M.K. 2008. Learning from positives examples when the negative class is undermined-microRNA gene identification. Algorithms for Molecular Biology 3(2), 1-9
    • (2008) Algorithms for Molecular Biology , vol.3 , Issue.2 , pp. 1-9
    • Yousef, M.1    Jung, S.2    Showe, L.C.3    Showe, M.K.4
  • 173
    • 30044443980 scopus 로고    scopus 로고
    • Single-class classification with mapping convergence
    • Yu, H. 2005. Single-class classification with mapping convergence. Machine Learning 610(1), 49-69
    • (2005) Machine Learning , vol.610 , Issue.1 , pp. 49-69
    • Yu, H.1
  • 181
    • 84971348288 scopus 로고    scopus 로고
    • One class support vector machine for anomaly detection in the communication network performance data
    • Wireless and Optical Communications, Spain
    • Zhang, R., Zhang, S., Muthuraman, S. & Jiang, J. 2007. One class support vector machine for anomaly detection in the communication network performance data. In Proceedings of the 5th Conference on Applied Electromagnetics, Wireless and Optical Communications, Spain, 31-37
    • (2007) Proceedings of the 5th Conference on Applied Electromagnetics , pp. 31-37
    • Zhang, R.1    Zhang, S.2    Muthuraman, S.3    Jiang, J.4
  • 185
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Computer Sciences, University of Wisconsin-Madison.
    • Zhu, X. 2005. Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison..
    • (2005) Technical Report 1530
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.