-
1
-
-
33846951759
-
Biomass recalcitrance: Engineering plants and enzymes for biofuels production
-
1:CAS:528:DC%2BD2sXhsVShsrk%3D
-
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315(5813):804-7.
-
(2007)
Science
, vol.315
, Issue.5813
, pp. 804-807
-
-
Himmel, M.E.1
Ding, S.Y.2
Johnson, D.K.3
Adney, W.S.4
Nimlos, M.R.5
Brady, J.W.6
Foust, T.D.7
-
2
-
-
38949132602
-
How biotech can transform biofuels
-
1:CAS:528:DC%2BD1cXhs1KhtLg%3D
-
Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, et al. How biotech can transform biofuels. Nat Biotechnol. 2008;26(2):169-72.
-
(2008)
Nat Biotechnol
, vol.26
, Issue.2
, pp. 169-172
-
-
Lynd, L.R.1
Laser, M.S.2
Bransby, D.3
Dale, B.E.4
Davison, B.5
Hamilton, R.6
Himmel, M.7
Keller, M.8
McMillan, J.D.9
Sheehan, J.10
-
3
-
-
76849102772
-
Biofuels and sustainability
-
Solomon BD. Biofuels and sustainability. Ann N Y Acad Sci. 2010;1185:119-34.
-
(2010)
Ann N y Acad Sci
, vol.1185
, pp. 119-134
-
-
Solomon, B.D.1
-
4
-
-
0028074589
-
Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase-acetyl-CoA reductive thioesterase
-
1:CAS:528:DyaK2cXlsFWqurk%3D
-
Burdette D, Zeikus JG. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase-acetyl-CoA reductive thioesterase. Biochem J. 1994;302(Pt 1):163-70.
-
(1994)
Biochem J
, vol.302
, pp. 163-170
-
-
Burdette, D.1
Zeikus, J.G.2
-
5
-
-
67649111013
-
Thermophilic ethanologenesis: Future prospects for second-generation bioethanol production
-
1:CAS:528:DC%2BD1MXnslymsbg%3D
-
Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol. 2009;27(7):398-405.
-
(2009)
Trends Biotechnol
, vol.27
, Issue.7
, pp. 398-405
-
-
Taylor, M.P.1
Eley, K.L.2
Martin, S.3
Tuffin, M.I.4
Burton, S.G.5
Cowan, D.A.6
-
6
-
-
0020084194
-
Ethanol from cellulose
-
1:CAS:528:DyaL38XhsVWjt70%3D
-
Wiegel J. Ethanol from cellulose. Experientia. 1982;38(2):151-6.
-
(1982)
Experientia
, vol.38
, Issue.2
, pp. 151-156
-
-
Wiegel, J.1
-
7
-
-
84874111513
-
Extreme Thermophiles: Moving beyond single-enzyme biocatalysis
-
Frock AD, Kelly RM. Extreme Thermophiles: moving beyond single-enzyme biocatalysis. Current Opin Chem Eng. 2012;1(4):363-72.
-
(2012)
Current Opin Chem Eng
, vol.1
, Issue.4
, pp. 363-372
-
-
Frock, A.D.1
Kelly, R.M.2
-
8
-
-
84861982164
-
Recent progress in consolidated bioprocessing
-
1:CAS:528:DC%2BC38Xot12htro%3D
-
Olson DG, McBride JE, Shaw AJ, Lynd LR. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol. 2012;23(3):396-405.
-
(2012)
Curr Opin Biotechnol
, vol.23
, Issue.3
, pp. 396-405
-
-
Olson, D.G.1
McBride, J.E.2
Shaw, A.J.3
Lynd, L.R.4
-
10
-
-
0036714783
-
Microbial cellulose utilization: Fundamentals and biotechnology
-
1:CAS:528:DC%2BD38XnsFOitrk%3D (table of contents)
-
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev MMBR. 2002;66(3):506-77 (table of contents).
-
(2002)
Microbiol Mol Biol Rev MMBR.
, vol.66
, Issue.3
, pp. 506-577
-
-
Lynd, L.R.1
Weimer, P.J.2
Van Zyl, W.H.3
Pretorius, I.S.4
-
11
-
-
84899957267
-
Thermophilic lignocellulose deconstruction
-
Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM. Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev. 2013;38(3):393-448.
-
(2013)
FEMS Microbiol Rev
, vol.38
, Issue.3
, pp. 393-448
-
-
Blumer-Schuette, S.E.1
Brown, S.D.2
Sander, K.B.3
Bayer, E.A.4
Kataeva, I.5
Zurawski, J.V.6
Conway, J.M.7
Adams, M.W.8
Kelly, R.M.9
-
12
-
-
46549086940
-
Extremely thermophilic microorganisms for biomass conversion: Status and prospects
-
1:CAS:528:DC%2BD1cXns1ant7g%3D
-
Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol. 2008;19(3):210-7.
-
(2008)
Curr Opin Biotechnol
, vol.19
, Issue.3
, pp. 210-217
-
-
Blumer-Schuette, S.E.1
Kataeva, I.2
Westpheling, J.3
Adams, M.W.4
Kelly, R.M.5
-
13
-
-
82955187557
-
Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405)
-
1:CAS:528:DC%2BC3MXhsFSqtrfO
-
Ellis LD, Holwerda EK, Hogsett D, Rogers S, Shao X, Tschaplinski T, Thorne P, Lynd LR. Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresour Technol. 2012;103(1):293-9.
-
(2012)
Bioresour Technol
, vol.103
, Issue.1
, pp. 293-299
-
-
Ellis, L.D.1
Holwerda, E.K.2
Hogsett, D.3
Rogers, S.4
Shao, X.5
Tschaplinski, T.6
Thorne, P.7
Lynd, L.R.8
-
14
-
-
82355185823
-
Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum
-
1:CAS:528:DC%2BC3MXht1yhur3F
-
Shao X, Raman B, Zhu M, Mielenz JR, Brown SD, Guss AM, Lynd LR. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol Biotechnol. 2011;92(3):641-52.
-
(2011)
Appl Microbiol Biotechnol
, vol.92
, Issue.3
, pp. 641-652
-
-
Shao, X.1
Raman, B.2
Zhu, M.3
Mielenz, J.R.4
Brown, S.D.5
Guss, A.M.6
Lynd, L.R.7
-
15
-
-
0030056187
-
Improved ethanol tolerance and production in strains of Clostridium thermocellum
-
1:CAS:528:DyaK28XitVOrs70%3D
-
Rani KS, Swamy MV, Sunitha D, Haritha D, Seenayya G. Improved ethanol tolerance and production in strains of Clostridium thermocellum. World J Microbiol Biotechnol. 1996;12(1):57-60.
-
(1996)
World J Microbiol Biotechnol
, vol.12
, Issue.1
, pp. 57-60
-
-
Rani, K.S.1
Swamy, M.V.2
Sunitha, D.3
Haritha, D.4
Seenayya, G.5
-
16
-
-
80051980539
-
Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum
-
1:CAS:528:DC%2BC3MXhtV2ms7bJ
-
Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M Jr, et al. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci USA. 2011;108(33):13752-7.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, Issue.33
, pp. 13752-13757
-
-
Brown, S.D.1
Guss, A.M.2
Karpinets, T.V.3
Parks, J.M.4
Smolin, N.5
Yang, S.6
Land, M.L.7
Klingeman, D.M.8
Bhandiwad, A.9
Rodriguez, M.10
-
18
-
-
83255174918
-
High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes
-
1:CAS:528:DC%2BC3MXhs1ChurzP
-
Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, et al. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol. 2011;77(23):8288-94.
-
(2011)
Appl Environ Microbiol
, vol.77
, Issue.23
, pp. 8288-8294
-
-
Argyros, D.A.1
Tripathi, S.A.2
Barrett, T.F.3
Rogers, S.R.4
Feinberg, L.F.5
Olson, D.G.6
Foden, J.M.7
Miller, B.B.8
Lynd, L.R.9
Hogsett, D.A.10
-
19
-
-
84939139436
-
Elimination of formate production in Clostridium thermocellum
-
1:CAS:528:DC%2BC2MXhtFKrsr3K
-
Rydzak T, Lynd LR, Guss AM. Elimination of formate production in Clostridium thermocellum. J Ind Microbiol Biotechnol. 2015;42(9):1263-72.
-
(2015)
J Ind Microbiol Biotechnol.
, vol.42
, Issue.9
, pp. 1263-1272
-
-
Rydzak, T.1
Lynd, L.R.2
Guss, A.M.3
-
20
-
-
78049278436
-
Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant
-
1:CAS:528:DC%2BC3cXhtlartr7E
-
Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, et al. Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol. 2010;76(19):6591-9.
-
(2010)
Appl Environ Microbiol
, vol.76
, Issue.19
, pp. 6591-6599
-
-
Tripathi, S.A.1
Olson, D.G.2
Argyros, D.A.3
Miller, B.B.4
Barrett, T.F.5
Murphy, D.M.6
McCool, J.D.7
Warner, A.K.8
Rajgarhia, V.B.9
Lynd, L.R.10
-
21
-
-
84895533735
-
Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum
-
Biswas R, Prabhu S, Lynd LR, Guss AM. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLoS One. 2014;9(2):e86389.
-
(2014)
PLoS One
, vol.9
, Issue.2
, pp. e86389
-
-
Biswas, R.1
Prabhu, S.2
Lynd, L.R.3
Guss, A.M.4
-
22
-
-
0025259020
-
Anaerocellum Thermophilum Gen. Nov Sp. Nov. An extremely thermophilic cellulolytic Eubacterium isolated from hot-springs in the valley of Geysers
-
Svetlichnyi VA, Svetlichnaya TP, Chernykh NA, Zavarzin GA. Anaerocellum Thermophilum Gen. Nov Sp. Nov. an extremely thermophilic cellulolytic Eubacterium isolated from hot-springs in the valley of Geysers. Microbiology. 1990;59(5):598-604.
-
(1990)
Microbiology
, vol.59
, Issue.5
, pp. 598-604
-
-
Svetlichnyi, V.A.1
Svetlichnaya, T.P.2
Chernykh, N.A.3
Zavarzin, G.A.4
-
23
-
-
67650457345
-
Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe "anaerocellum thermophilum" DSM 6725
-
1:CAS:528:DC%2BD1MXptV2gs7c%3D
-
Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MW. Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe "Anaerocellum thermophilum" DSM 6725. Appl Environ Microbiol. 2009;75(14):4762-9.
-
(2009)
Appl Environ Microbiol
, vol.75
, Issue.14
, pp. 4762-4769
-
-
Yang, S.J.1
Kataeva, I.2
Hamilton-Brehm, S.D.3
Engle, N.L.4
Tschaplinski, T.J.5
Doeppke, C.6
Davis, M.7
Westpheling, J.8
Adams, M.W.9
-
24
-
-
77956685960
-
Classification of 'Anaerocellum thermophilum' strain DSM 6725 as Caldicellulosiruptor bescii sp. Nov
-
Yang SJ, Kataeva I, Wiegel J, Yin Y, Dam P, Xu Y, Westpheling J, Adams MW. Classification of 'Anaerocellum thermophilum' strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. Int J Syst Evol Microbiol. 2010;60(Pt 9):2011-5.
-
(2010)
Int J Syst Evol Microbiol
, vol.60
, pp. 2011-2015
-
-
Yang, S.J.1
Kataeva, I.2
Wiegel, J.3
Yin, Y.4
Dam, P.5
Xu, Y.6
Westpheling, J.7
Adams, M.W.8
-
25
-
-
84873119880
-
Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes
-
1:CAS:528:DC%2BC38XhvVCrsLfF
-
Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol. 2013;128:751-9.
-
(2013)
Bioresour Technol
, vol.128
, pp. 751-759
-
-
Bhalla, A.1
Bansal, N.2
Kumar, S.3
Bischoff, K.M.4
Sani, R.K.5
-
26
-
-
84902590153
-
Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii
-
1:CAS:528:DC%2BC2cXptlKru7w%3D
-
Chung D, Cha M, Guss AM, Westpheling J. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci USA. 2014;111(24):8931-6.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.24
, pp. 8931-8936
-
-
Chung, D.1
Cha, M.2
Guss, A.M.3
Westpheling, J.4
-
27
-
-
84877056036
-
Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: Use for extending genetic methodologies to other members of this genus
-
1:CAS:528:DC%2BC3sXnsFKltrc%3D
-
Chung D, Cha M, Farkas J, Westpheling J. Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus. PLoS One. 2013;8(5):e62881.
-
(2013)
PLoS One
, vol.8
, Issue.5
, pp. e62881
-
-
Chung, D.1
Cha, M.2
Farkas, J.3
Westpheling, J.4
-
28
-
-
84878246106
-
Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement
-
1:CAS:528:DC%2BC3sXhtVamsrjM
-
Chung D, Farkas J, Westpheling J. Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol Biofuels. 2013;6(1):82.
-
(2013)
Biotechnol Biofuels
, vol.6
, Issue.1
, pp. 82
-
-
Chung, D.1
Farkas, J.2
Westpheling, J.3
-
29
-
-
84925877570
-
Homologous expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated
-
Chung D, Young J, Bomble YJ, Vander Wall TA, Groom J, Himmel ME, Westpheling J. Homologous expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated. PLoS One. 2015;10(3):e0119508.
-
(2015)
PLoS One
, vol.10
, Issue.3
, pp. e0119508
-
-
Chung, D.1
Young, J.2
Bomble, Y.J.3
Vander Wall, T.A.4
Groom, J.5
Himmel, M.E.6
Westpheling, J.7
-
31
-
-
66149130333
-
Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium "anaerocellum thermophilum" DSM 6725
-
1:CAS:528:DC%2BD1MXms1eitL4%3D
-
Kataeva IA, Yang SJ, Dam P, Poole FL 2nd, Yin Y, Zhou F, Chou WC, Xu Y, Goodwin L, Sims DR, et al. Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium "Anaerocellum thermophilum" DSM 6725. J Bacteriol. 2009;191(11):3760-1.
-
(2009)
J Bacteriol
, vol.191
, Issue.11
, pp. 3760-3761
-
-
Kataeva, I.A.1
Yang, S.J.2
Dam, P.3
Poole, F.L.4
Yin, Y.5
Zhou, F.6
Chou, W.C.7
Xu, Y.8
Goodwin, L.9
Sims, D.R.10
-
32
-
-
83055180107
-
Correlation of genomic and physiological traits of thermoanaerobacter species with biofuel yields
-
1:CAS:528:DC%2BC3MXhs1GqtrbK
-
Hemme CL, Fields MW, He Q, Deng Y, Lin L, Tu Q, Mouttaki H, Zhou A, Feng X, Zuo Z, et al. Correlation of genomic and physiological traits of thermoanaerobacter species with biofuel yields. Appl Environ Microbiol. 2011;77(22):7998-8008.
-
(2011)
Appl Environ Microbiol
, vol.77
, Issue.22
, pp. 7998-8008
-
-
Hemme, C.L.1
Fields, M.W.2
He, Q.3
Deng, Y.4
Lin, L.5
Tu, Q.6
Mouttaki, H.7
Zhou, A.8
Feng, X.9
Zuo, Z.10
-
33
-
-
0027439895
-
Taxonomic distinction of saccharolytic thermophilic anaerobes: Description of Thermoanaerobacterium xylanolyticum gen. Nov., sp. Nov., and Thermoanaerobacterium saccharolyticum gen. Nov., sp. Nov.; Reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. Nov.
-
Thermoanaerobacterium thermosulfurigenes comb. Nov., and Thermoanaerobacter thermohydrosulfuricus comb. Nov., respectively; And transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus
-
Lee Y-E, Jain MK, Lee C, Zeikus JG. Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol. 1993;43(1):41-51.
-
(1993)
Int J Syst Bacteriol
, vol.43
, Issue.1
, pp. 41-51
-
-
Lee, Y.-E.1
Jain, M.K.2
Lee, C.3
Zeikus, J.G.4
-
34
-
-
35649028412
-
Thermoanaerobacter pseudethanolicus sp. Nov., a thermophilic heterotrophic anaerobe from Yellowstone National Park
-
1:CAS:528:DC%2BD2sXhsVanu7zN
-
Onyenwoke RU, Kevbrin VV, Lysenko AM, Wiegel J. Thermoanaerobacter pseudethanolicus sp. nov., a thermophilic heterotrophic anaerobe from Yellowstone National Park. Int J Syst Evol Microbiol. 2007;57(Pt 10):2191-3.
-
(2007)
Int J Syst Evol Microbiol
, vol.57
, pp. 2191-2193
-
-
Onyenwoke, R.U.1
Kevbrin, V.V.2
Lysenko, A.M.3
Wiegel, J.4
-
35
-
-
0029950256
-
Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme
-
1:CAS:528:DyaK28Xjt1Gjtr8%3D
-
Burdette DS, Vieille C, Zeikus JG. Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochem J. 1996;316(Pt 1):115-22.
-
(1996)
Biochem J
, vol.316
, pp. 115-122
-
-
Burdette, D.S.1
Vieille, C.2
Zeikus, J.G.3
-
36
-
-
77955657983
-
Thermoanaerobacter spp. Control ethanol pathway via transcriptional regulation and versatility of key enzymes
-
1:CAS:528:DC%2BC3cXhtVeht7%2FM
-
Pei J, Zhou Q, Jiang Y, Le Y, Li H, Shao W, Wiegel J. Thermoanaerobacter spp. control ethanol pathway via transcriptional regulation and versatility of key enzymes. Metab Eng. 2010;12(5):420-8.
-
(2010)
Metab Eng
, vol.12
, Issue.5
, pp. 420-428
-
-
Pei, J.1
Zhou, Q.2
Jiang, Y.3
Le, Y.4
Li, H.5
Shao, W.6
Wiegel, J.7
-
37
-
-
84889664281
-
Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii
-
1:CAS:528:DC%2BC2cXis1Gqsg%3D%3D
-
Basen M, Rhaesa AM, Kataeva I, Prybol CJ, Scott IM, Poole FL, Adams MW. Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Bioresour Technol. 2014;152:384-92.
-
(2014)
Bioresour Technol
, vol.152
, pp. 384-392
-
-
Basen, M.1
Rhaesa, A.M.2
Kataeva, I.3
Prybol, C.J.4
Scott, I.M.5
Poole, F.L.6
Adams, M.W.7
-
38
-
-
0035125230
-
Salt accumulation resulting from base added for pH control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture
-
1:CAS:528:DC%2BD3MXivValsg%3D%3D
-
Lynd LR, Baskaran S, Casten S. Salt accumulation resulting from base added for pH control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Biotechnol Prog. 2001;17(1):118-25.
-
(2001)
Biotechnol Prog
, vol.17
, Issue.1
, pp. 118-125
-
-
Lynd, L.R.1
Baskaran, S.2
Casten, S.3
-
39
-
-
84873710352
-
Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii
-
1:CAS:528:DC%2BC3sXhsFClsw%3D%3D
-
Farkas J, Chung D, Cha M, Copeland J, Grayeski P, Westpheling J. Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii. J Ind Microbiol Biotechnol. 2013;40(1):41-9.
-
(2013)
J Ind Microbiol Biotechnol
, vol.40
, Issue.1
, pp. 41-49
-
-
Farkas, J.1
Chung, D.2
Cha, M.3
Copeland, J.4
Grayeski, P.5
Westpheling, J.6
-
40
-
-
79953108494
-
Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics
-
1:CAS:528:DC%2BC3MXkslyhsrk%3D
-
Scheidle M, Dittrich B, Klinger J, Ikeda H, Klee D, Buchs J. Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics. BMC Biotechnol. 2011;11:25.
-
(2011)
BMC Biotechnol
, vol.11
, pp. 25
-
-
Scheidle, M.1
Dittrich, B.2
Klinger, J.3
Ikeda, H.4
Klee, D.5
Buchs, J.6
-
41
-
-
33749347886
-
Fed-batch mode in shake flasks by slow-release technique
-
1:CAS:528:DC%2BD28XpvFait74%3D
-
Jeude M, Dittrich B, Niederschulte H, Anderlei T, Knocke C, Klee D, Büchs J. Fed-batch mode in shake flasks by slow-release technique. Biotechnol Bioeng. 2006;95(3):433-45.
-
(2006)
Biotechnol Bioeng
, vol.95
, Issue.3
, pp. 433-445
-
-
Jeude, M.1
Dittrich, B.2
Niederschulte, H.3
Anderlei, T.4
Knocke, C.5
Klee, D.6
Büchs, J.7
-
43
-
-
0027485665
-
Minimal requirements for exponential growth of Lactococcus lactis
-
1:CAS:528:DyaK2cXislansA%3D%3D
-
Jensen PR, Hammer K. Minimal requirements for exponential growth of Lactococcus lactis. Appl Environ Microbiol. 1993;59(12):4363-6.
-
(1993)
Appl Environ Microbiol
, vol.59
, Issue.12
, pp. 4363-4366
-
-
Jensen, P.R.1
Hammer, K.2
-
44
-
-
0016283409
-
Culture medium for Enterobacteria
-
1:CAS:528:DyaE2cXlsVygu7k%3D
-
Neidhardt FC, Bloch PL, Smith DF. Culture medium for Enterobacteria. J Bacteriol. 1974;119(3):736-47.
-
(1974)
J Bacteriol
, vol.119
, Issue.3
, pp. 736-747
-
-
Neidhardt, F.C.1
Bloch, P.L.2
Smith, D.F.3
-
45
-
-
12244253037
-
Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus
-
van Niel EW, Claassen PA, Stams AJ. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng. 2003;81(3):255-62.
-
(2003)
Biotechnol Bioeng
, vol.81
, Issue.3
, pp. 255-262
-
-
Van Niel, E.W.1
Claassen, P.A.2
Stams, A.J.3
-
46
-
-
0344653612
-
Responses of E. Coli to osmotic stress: Large changes in amounts of cytoplasmic solutes and water
-
1:CAS:528:DyaK1cXivFKmsLc%3D
-
Record MT Jr, Courtenay ES, Cayley DS, Guttman HJ. Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem Sci. 1998;23(4):143-8.
-
(1998)
Trends Biochem Sci
, vol.23
, Issue.4
, pp. 143-148
-
-
Record, M.T.1
Courtenay, E.S.2
Cayley, D.S.3
Guttman, H.J.4
-
47
-
-
84936991306
-
Cofactor Specificity of the bifunctional alcohol and aldehyde dehydrogenase (AdhE) in wild-type and mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum
-
1:CAS:528:DC%2BC2MXhtFygtbnJ
-
Zheng T, Olson DG, Tian L, Bomble YJ, Himmel ME, Lo J, Hon S, Shaw AJ, van Dijken JP, Lynd LR. Cofactor Specificity of the bifunctional alcohol and aldehyde dehydrogenase (AdhE) in wild-type and mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol. 2015;197(15):2610-9.
-
(2015)
J Bacteriol
, vol.197
, Issue.15
, pp. 2610-2619
-
-
Zheng, T.1
Olson, D.G.2
Tian, L.3
Bomble, Y.J.4
Himmel, M.E.5
Lo, J.6
Hon, S.7
Shaw, A.J.8
Van Dijken, J.P.9
Lynd, L.R.10
-
48
-
-
84892686671
-
Isolation and bioinformatic analysis of a novel transposable element, ISCbe4, from the hyperthermophilic bacterium, Caldicellulosiruptor bescii
-
1:CAS:528:DC%2BC3sXhsFCjtLrM
-
Cha M, Wang H, Chung D, Bennetzen JL, Westpheling J. Isolation and bioinformatic analysis of a novel transposable element, ISCbe4, from the hyperthermophilic bacterium, Caldicellulosiruptor bescii. J Ind Microbiol Biotechnol. 2013;40(12):1443-8.
-
(2013)
J Ind Microbiol Biotechnol
, vol.40
, Issue.12
, pp. 1443-1448
-
-
Cha, M.1
Wang, H.2
Chung, D.3
Bennetzen, J.L.4
Westpheling, J.5
-
49
-
-
84878368850
-
Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass
-
1:CAS:528:DC%2BC3sXpvFKitrY%3D
-
Cha M, Chung D, Elkins JG, Guss AM, Westpheling J. Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels. 2013;6(1):85.
-
(2013)
Biotechnol Biofuels
, vol.6
, Issue.1
, pp. 85
-
-
Cha, M.1
Chung, D.2
Elkins, J.G.3
Guss, A.M.4
Westpheling, J.5
-
50
-
-
67649413347
-
The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: A new perspective on anaerobic hydrogen production
-
1:CAS:528:DC%2BD1MXotlCktrg%3D
-
Schut GJ, Adams MW. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol. 2009;191(13):4451-7.
-
(2009)
J Bacteriol
, vol.191
, Issue.13
, pp. 4451-4457
-
-
Schut, G.J.1
Adams, M.W.2
-
51
-
-
84866481432
-
Proteomic analysis of Clostridium thermocellum core metabolism: Relative protein expression profiles and growth phase-dependent changes in protein expression
-
1:CAS:528:DC%2BC3sXjsFWjsQ%3D%3D
-
Rydzak T, McQueen PD, Krokhin OV, Spicer V, Ezzati P, Dwivedi RC, Shamshurin D, Levin DB, Wilkins JA, Sparling R. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. BMC Microbiol. 2012;12:214.
-
(2012)
BMC Microbiol
, vol.12
, pp. 214
-
-
Rydzak, T.1
McQueen, P.D.2
Krokhin, O.V.3
Spicer, V.4
Ezzati, P.5
Dwivedi, R.C.6
Shamshurin, D.7
Levin, D.B.8
Wilkins, J.A.9
Sparling, R.10
-
52
-
-
77957326597
-
+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri
-
1:CAS:528:DC%2BC3cXhsFCitbvP
-
+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J Bacteriol. 2010;192(19):5115-23.
-
(2010)
J Bacteriol
, vol.192
, Issue.19
, pp. 5115-5123
-
-
Wang, S.1
Huang, H.2
Moll, J.3
Thauer, R.K.4
-
54
-
-
84893454556
-
Engineering hydrogen gas production from formate in a hyperthermophile by heterologous production of an 18-subunit membrane-bound complex
-
1:CAS:528:DC%2BC2cXhs1Sjt7w%3D
-
Lipscomb GL, Schut GJ, Thorgersen MP, Nixon WJ, Kelly RM, Adams MW. Engineering hydrogen gas production from formate in a hyperthermophile by heterologous production of an 18-subunit membrane-bound complex. J Biol Chem. 2014;289(5):2873-9.
-
(2014)
J Biol Chem
, vol.289
, Issue.5
, pp. 2873-2879
-
-
Lipscomb, G.L.1
Schut, G.J.2
Thorgersen, M.P.3
Nixon, W.J.4
Kelly, R.M.5
Adams, M.W.6
|