메뉴 건너뛰기




Volumn 101, Issue 1-3, 2015, Pages 105-135

Probabilistic combination of classification rules and its application to medical diagnosis

Author keywords

Classification rules; Imbalanced data; Medical diagnosis; Probabilistic combination

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER AIDED DIAGNOSIS; DECISION TREES; GRAPHIC METHODS; LEARNING ALGORITHMS; LEARNING SYSTEMS; RANDOM VARIABLES;

EID: 84942373924     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-015-5508-x     Document Type: Article
Times cited : (22)

References (75)
  • 3
    • 78650570828 scopus 로고    scopus 로고
    • Sequential covering rule induction algorithm for variable consistency rough set approaches
    • Błaszczyński, J., Słowiński, R., & Szeląg, M. (2011). Sequential covering rule induction algorithm for variable consistency rough set approaches. Information Sciences, 181(5), 987–1002.
    • (2011) Information Sciences , vol.181 , Issue.5 , pp. 987-1002
    • Błaszczyński, J.1    Słowiński, R.2    Szeląg, M.3
  • 5
    • 0037361994 scopus 로고    scopus 로고
    • Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
    • Brazdil, P. B., Soares, C., & Da Costa, J. P. (2003). Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Machine Learning, 50(3), 251–277.
    • (2003) Machine Learning , vol.50 , Issue.3 , pp. 251-277
    • Brazdil, P.B.1    Soares, C.2    Da Costa, J.P.3
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 80255133264 scopus 로고    scopus 로고
    • An experimental comparison of classification algorithms for imbalanced credit scoring data sets
    • Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39(3), 3446–3453.
    • (2012) Expert Systems with Applications , vol.39 , Issue.3 , pp. 3446-3453
    • Brown, I.1    Mues, C.2
  • 8
    • 34249824562 scopus 로고    scopus 로고
    • Mining Pareto-optimal rules with respect to support and confirmation or support and anti-support
    • Brzezinska, I., Greco, S., & Slowinski, R. (2007). Mining Pareto-optimal rules with respect to support and confirmation or support and anti-support. Engineering Applications of Artificial Intelligence, 20(5), 587–600.
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.5 , pp. 587-600
    • Brzezinska, I.1    Greco, S.2    Slowinski, R.3
  • 9
    • 0003637516 scopus 로고
    • A theory of learning classification rules
    • University of Technology, Sydney
    • Buntine, W. L. (1992). A theory of learning classification rules. PhD thesis, University of Technology, Sydney.
    • (1992) PhD thesis
    • Buntine, W.L.1
  • 10
    • 40649116219 scopus 로고    scopus 로고
    • Cawley, G. C. (2006). Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs. In International Joint Conference on Neural Networks (IJCNN’06) (pp. 1661–1668). IEEE
    • Cawley, G. C. (2006). Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs. In International Joint Conference on Neural Networks (IJCNN’06) (pp. 1661–1668). IEEE
  • 13
    • 0003006556 scopus 로고
    • Estimating probabilities: A crucial task in machine learning
    • Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning. In ECAI (pp. 147–149).
    • (1990) In ECAI , pp. 147-149
    • Cestnik, B.1
  • 17
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine learning, 9(4), 309–347.
    • (1992) Machine learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 18
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.
    • (1995) Machine learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 19
    • 77950979688 scopus 로고    scopus 로고
    • Daemen, A., & De Moor, B. (2009). Development of a kernel function for clinical data. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009) (pp. 5913–5917). IEEE
    • Daemen, A., & De Moor, B. (2009). Development of a kernel function for clinical data. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009) (pp. 5913–5917). IEEE
  • 21
    • 56449100417 scopus 로고    scopus 로고
    • Dembczyński, K., Kotłowski, W., & Słowiński, R. (2008). Maximum likelihood rule ensembles. In ICML (pp. 224–231). ACM
    • Dembczyński, K., Kotłowski, W., & Słowiński, R. (2008). Maximum likelihood rule ensembles. In ICML (pp. 224–231). ACM
  • 22
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1–30.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 24
    • 0013396180 scopus 로고    scopus 로고
    • Bayesian averaging of classifiers and the overfitting problem
    • Domingos, P. (2000). Bayesian averaging of classifiers and the overfitting problem. In ICML (pp. 223–230).
    • (2000) In ICML , pp. 223-230
    • Domingos, P.1
  • 25
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2), 103–130.
    • (1997) Machine Learning , vol.29 , Issue.2 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 27
    • 57849113257 scopus 로고    scopus 로고
    • Ek, C. H., Rihan, J., Torr, P. H., Rogez, G., & Lawrence, N. D. (2008). Ambiguity modeling in latent spaces. In Machine learning for multimodal interaction (pp. 62–73). Springer
    • Ek, C. H., Rihan, J., Torr, P. H., Rogez, G., & Lawrence, N. D. (2008). Ambiguity modeling in latent spaces. In Machine learning for multimodal interaction (pp. 62–73). Springer
  • 28
    • 84867577175 scopus 로고    scopus 로고
    • The foundations of cost-sensitive learning
    • Elkan, C. (2001). The foundations of cost-sensitive learning. In IJCAI (Vol. 17, pp. 973–978).
    • (2001) In IJCAI , vol.17 , pp. 973-978
    • Elkan, C.1
  • 29
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 31
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • Fayyad, U., & Irani, K. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. In IJCAI (pp. 1022–1029).
    • (1993) In IJCAI , pp. 1022-1029
    • Fayyad, U.1    Irani, K.2
  • 33
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 34
    • 0033075882 scopus 로고    scopus 로고
    • Separate-and-conquer rule learning
    • Fürnkranz, J. (1999). Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1), 3–54.
    • (1999) Artificial Intelligence Review , vol.13 , Issue.1 , pp. 3-54
    • Fürnkranz, J.1
  • 37
    • 84942376252 scopus 로고    scopus 로고
    • Gama, J. (2000). A cost-sensitive iterative Bayes. In ICML
    • Gama, J. (2000). A cost-sensitive iterative Bayes. In ICML.
  • 40
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63–91.
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R.1
  • 41
    • 84949479983 scopus 로고    scopus 로고
    • Japkowicz, N. (2001). Concept-learning in the presence of between-class and within-class imbalances. In Advances in artificial intelligence (pp. 67–77). Springer
    • Japkowicz, N. (2001). Concept-learning in the presence of between-class and within-class imbalances. In Advances in artificial intelligence (pp. 67–77). Springer
  • 42
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5), 429–449.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 45
    • 0011900636 scopus 로고
    • Combining decisions of multiple rules
    • Kononenko, I. (1992). Combining decisions of multiple rules. In AIMSA (pp. 87–96).
    • (1992) In AIMSA , pp. 87-96
    • Kononenko, I.1
  • 46
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: History, state of the art and perspective
    • Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine, 23(1), 89–109.
    • (2001) Artificial Intelligence in Medicine , vol.23 , Issue.1 , pp. 89-109
    • Kononenko, I.1
  • 47
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: A review of classification techniques
    • Kotsiantis, S. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.
    • (2007) Informatica , vol.31 , pp. 249-268
    • Kotsiantis, S.1
  • 48
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced training sets: One-sided selection. In ICML (pp. 179–186).
    • (1997) In ICML , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 49
    • 84947918649 scopus 로고    scopus 로고
    • Learning when negative examples abound
    • Kubat, M., Holte, R., & Matwin, S. (1997). Learning when negative examples abound. In ECML (pp. 146–153).
    • (1997) In ECML , pp. 146-153
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 50
    • 0032895111 scopus 로고    scopus 로고
    • Selected techniques for data mining in medicine
    • Lavrač, N. (1999). Selected techniques for data mining in medicine. Artificial Intelligence in Medicine, 16(1), 3–23.
    • (1999) Artificial Intelligence in Medicine , vol.16 , Issue.1 , pp. 3-23
    • Lavrač, N.1
  • 52
    • 0036146454 scopus 로고    scopus 로고
    • The problem of bias in training data in regression problems in medical decision support
    • Mac Namee, B., Cunningham, P., Byrne, S., & Corrigan, O. (2002). The problem of bias in training data in regression problems in medical decision support. Artificial Intelligence in Medicine, 24(1), 51–70.
    • (2002) Artificial Intelligence in Medicine , vol.24 , Issue.1 , pp. 51-70
    • Mac Namee, B.1    Cunningham, P.2    Byrne, S.3    Corrigan, O.4
  • 53
    • 50549085684 scopus 로고    scopus 로고
    • SGERD: A steady-state genetic algorithm for extracting fuzzy classification rules from data
    • Mansoori, E., Zolghadri, M., & Katebi, S. (2008). SGERD: A steady-state genetic algorithm for extracting fuzzy classification rules from data. IEEE Transactions on Fuzzy Systems, 16(4), 1061–1071.
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , Issue.4 , pp. 1061-1071
    • Mansoori, E.1    Zolghadri, M.2    Katebi, S.3
  • 54
    • 77956548044 scopus 로고    scopus 로고
    • Risk minimization, probability elicitation, and cost-sensitive SVMs
    • Masnadi-Shirazi, H., & Vasconcelos, N. (2010). Risk minimization, probability elicitation, and cost-sensitive SVMs. In ICML (pp. 204–213).
    • (2010) In ICML , pp. 204-213
    • Masnadi-Shirazi, H.1    Vasconcelos, N.2
  • 55
    • 0001059008 scopus 로고
    • The multi-purpose incremental learning system AQ15 and its testing application to three medical domains
    • Michalski, R. S., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. In Proc AAAI (pp. 1–41).
    • (1986) In Proc AAAI , pp. 1-41
    • Michalski, R.S.1    Mozetic, I.2    Hong, J.3    Lavrac, N.4
  • 56
    • 85018142797 scopus 로고    scopus 로고
    • Bayesian model averaging is not model combination (pp
    • Minka, T. P. (2000). Bayesian model averaging is not model combination (pp. 1–2). http://research.microsoft.com/en-us/um/people/minka/papers/minka-bma-isnt-mc
    • (2000) 1–2
    • Minka, T.P.1
  • 59
    • 84942376255 scopus 로고    scopus 로고
    • Pearson, R., Goney, G., & Shwaber, J. (2003). Imbalanced clustering for microarray time-series. In ICML
    • Pearson, R., Goney, G., & Shwaber, J. (2003). Imbalanced clustering for microarray time-series. In ICML.
  • 61
    • 37849053727 scopus 로고    scopus 로고
    • Margin-based first-order rule learning
    • Rückert, U., & Kramer, S. (2008). Margin-based first-order rule learning. Machine Learning, 70(2–3), 189–206.
    • (2008) Machine Learning , vol.70 , Issue.2-3 , pp. 189-206
    • Rückert, U.1    Kramer, S.2
  • 63
    • 0002865353 scopus 로고    scopus 로고
    • On rough set based approaches to induction of decision rules
    • Stefanowski, J. (1998). On rough set based approaches to induction of decision rules. Rough Sets in Knowledge Discovery, 1(1), 500–529.
    • (1998) Rough Sets in Knowledge Discovery , vol.1 , Issue.1 , pp. 500-529
    • Stefanowski, J.1
  • 64
    • 33747062126 scopus 로고    scopus 로고
    • Rough sets for handling imbalanced data: Combining filtering and rule-based classifiers
    • Stefanowski, J., & Wilk, S. (2006). Rough sets for handling imbalanced data: Combining filtering and rule-based classifiers. Fundamenta Informaticae, 72(1), 379–391.
    • (2006) Fundamenta Informaticae , vol.72 , Issue.1 , pp. 379-391
    • Stefanowski, J.1    Wilk, S.2
  • 66
    • 0035735751 scopus 로고    scopus 로고
    • Generalization, similarity, and Bayesian inference
    • Tenenbaum, J., & Griffiths, T. (2001). Generalization, similarity, and Bayesian inference. Behavioral and Brain Sciences, 24(4), 629–640.
    • (2001) Behavioral and Brain Sciences , vol.24 , Issue.4 , pp. 629-640
    • Tenenbaum, J.1    Griffiths, T.2
  • 67
    • 84874190632 scopus 로고    scopus 로고
    • Decision rules extraction from data stream in the presence of changing context for diabetes treatment
    • Tomczak, J., & Gonczarek, A. (2013). Decision rules extraction from data stream in the presence of changing context for diabetes treatment. Knowledge and Information Systems, 34, 521–546.
    • (2013) Knowledge and Information Systems , vol.34 , pp. 521-546
    • Tomczak, J.1    Gonczarek, A.2
  • 68
    • 79958785529 scopus 로고    scopus 로고
    • Empirical evaluation methods for multiobjective reinforcement learning algorithms
    • Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., & Dekker, E. (2011). Empirical evaluation methods for multiobjective reinforcement learning algorithms. Machine Learning, 84(1–2), 51–80.
    • (2011) Machine Learning , vol.84 , Issue.1-2 , pp. 51-80
    • Vamplew, P.1    Dazeley, R.2    Berry, A.3    Issabekov, R.4    Dekker, E.5
  • 70
    • 79960133608 scopus 로고    scopus 로고
    • Vorontsov, K., & Ivahnenko, A. (2011). Tight combinatorial generalization bounds for threshold conjunction rules. In Pattern recognition and machine intelligence (pp. 66–73). Springer
    • Vorontsov, K., & Ivahnenko, A. (2011). Tight combinatorial generalization bounds for threshold conjunction rules. In Pattern recognition and machine intelligence (pp. 66–73). Springer
  • 72
    • 77957583037 scopus 로고    scopus 로고
    • Boosting support vector machines for imbalanced data sets
    • Wang, B., & Japkowicz, N. (2010). Boosting support vector machines for imbalanced data sets. Knowledge and Information Systems, 25(1), 1–20.
    • (2010) Knowledge and Information Systems , vol.25 , Issue.1 , pp. 1-20
    • Wang, B.1    Japkowicz, N.2
  • 73
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 74
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
    • Zadrozny, B., & Elkan, C. (2001). Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In ICML (pp. 609–616).
    • (2001) In ICML , pp. 609-616
    • Zadrozny, B.1    Elkan, C.2
  • 75
    • 84888298686 scopus 로고    scopus 로고
    • Boosted SVM for extracting rules from imbalance data in application to prediction of the post-operative life expectancy in the lung cancer patients
    • Zięba, M., Tomczak, J. M., Lubicz, M., & Świątek, J. (2014). Boosted SVM for extracting rules from imbalance data in application to prediction of the post-operative life expectancy in the lung cancer patients. Applied Soft Computing, 14, 99–108.
    • (2014) Applied Soft Computing , vol.14 , pp. 99-108
    • Zięba, M.1    Tomczak, J.M.2    Lubicz, M.3    Świątek, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.