-
1
-
-
79951829331
-
KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
-
Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., et al. (2010). KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing, 17, 255–287.
-
(2010)
Journal of Multiple-Valued Logic and Soft Computing
, vol.17
, pp. 255-287
-
-
Alcalá, J.1
Fernández, A.2
Luengo, J.3
Derrac, J.4
García, S.5
Sánchez, L.6
Herrera, F.7
-
2
-
-
0942277347
-
ART: A hybrid classification model
-
Berzal, F., Cubero, J., Sánchez, D., & Serrano, J. (2004). ART: A hybrid classification model. Machine Learning, 54, 67–92.
-
(2004)
Machine Learning
, vol.54
, pp. 67-92
-
-
Berzal, F.1
Cubero, J.2
Sánchez, D.3
Serrano, J.4
-
3
-
-
78650570828
-
Sequential covering rule induction algorithm for variable consistency rough set approaches
-
Błaszczyński, J., Słowiński, R., & Szeląg, M. (2011). Sequential covering rule induction algorithm for variable consistency rough set approaches. Information Sciences, 181(5), 987–1002.
-
(2011)
Information Sciences
, vol.181
, Issue.5
, pp. 987-1002
-
-
Błaszczyński, J.1
Słowiński, R.2
Szeląg, M.3
-
4
-
-
0038157332
-
Toxicology analysis by means of the JSM-method
-
Blinova, V., Dobrynin, D., Finn, V., Kuznetsov, S. O., & Pankratova, E. (2003). Toxicology analysis by means of the JSM-method. Bioinformatics, 19(10), 1201–1207.
-
(2003)
Bioinformatics
, vol.19
, Issue.10
, pp. 1201-1207
-
-
Blinova, V.1
Dobrynin, D.2
Finn, V.3
Kuznetsov, S.O.4
Pankratova, E.5
-
5
-
-
0037361994
-
Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
-
Brazdil, P. B., Soares, C., & Da Costa, J. P. (2003). Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Machine Learning, 50(3), 251–277.
-
(2003)
Machine Learning
, vol.50
, Issue.3
, pp. 251-277
-
-
Brazdil, P.B.1
Soares, C.2
Da Costa, J.P.3
-
6
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
80255133264
-
An experimental comparison of classification algorithms for imbalanced credit scoring data sets
-
Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39(3), 3446–3453.
-
(2012)
Expert Systems with Applications
, vol.39
, Issue.3
, pp. 3446-3453
-
-
Brown, I.1
Mues, C.2
-
8
-
-
34249824562
-
Mining Pareto-optimal rules with respect to support and confirmation or support and anti-support
-
Brzezinska, I., Greco, S., & Slowinski, R. (2007). Mining Pareto-optimal rules with respect to support and confirmation or support and anti-support. Engineering Applications of Artificial Intelligence, 20(5), 587–600.
-
(2007)
Engineering Applications of Artificial Intelligence
, vol.20
, Issue.5
, pp. 587-600
-
-
Brzezinska, I.1
Greco, S.2
Slowinski, R.3
-
9
-
-
0003637516
-
A theory of learning classification rules
-
University of Technology, Sydney
-
Buntine, W. L. (1992). A theory of learning classification rules. PhD thesis, University of Technology, Sydney.
-
(1992)
PhD thesis
-
-
Buntine, W.L.1
-
10
-
-
40649116219
-
-
Cawley, G. C. (2006). Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs. In International Joint Conference on Neural Networks (IJCNN’06) (pp. 1661–1668). IEEE
-
Cawley, G. C. (2006). Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs. In International Joint Conference on Neural Networks (IJCNN’06) (pp. 1661–1668). IEEE
-
-
-
-
11
-
-
33747680326
-
Association mining
-
Ceglar, A., & Roddick, J. F. (2006). Association mining. ACM Computing Surveys (CSUR), 38(2), 5.
-
(2006)
ACM Computing Surveys (CSUR)
, vol.38
, Issue.2
, pp. 5
-
-
Ceglar, A.1
Roddick, J.F.2
-
12
-
-
84884974416
-
Parameter-free classification in multi-class imbalanced data sets
-
Cerf, L., Gay, D., Selmaoui-Folcher, N., Crémilleux, B., & Boulicaut, J. F. (2013). Parameter-free classification in multi-class imbalanced data sets. Data & Knowledge Engineering, 87, 109–129.
-
(2013)
Data & Knowledge Engineering
, vol.87
, pp. 109-129
-
-
Cerf, L.1
Gay, D.2
Selmaoui-Folcher, N.3
Crémilleux, B.4
Boulicaut, J.F.5
-
13
-
-
0003006556
-
Estimating probabilities: A crucial task in machine learning
-
Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning. In ECAI (pp. 147–149).
-
(1990)
In ECAI
, pp. 147-149
-
-
Cestnik, B.1
-
14
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
15
-
-
77952265354
-
Building an associative classifier based on fuzzy association rules
-
Chen, Z., & Chen, G. (2008). Building an associative classifier based on fuzzy association rules. International Journal of Computational Intelligence Systems, 1(3), 262–273.
-
(2008)
International Journal of Computational Intelligence Systems
, vol.1
, Issue.3
, pp. 262-273
-
-
Chen, Z.1
Chen, G.2
-
17
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine learning, 9(4), 309–347.
-
(1992)
Machine learning
, vol.9
, Issue.4
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
18
-
-
34249753618
-
Support-vector networks
-
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.
-
(1995)
Machine learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
19
-
-
77950979688
-
-
Daemen, A., & De Moor, B. (2009). Development of a kernel function for clinical data. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009) (pp. 5913–5917). IEEE
-
Daemen, A., & De Moor, B. (2009). Development of a kernel function for clinical data. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009) (pp. 5913–5917). IEEE
-
-
-
-
20
-
-
84867113123
-
Manifold relevance determination
-
Damianou, A., Ek, C., Titsias, M., & Lawrence, N. (2012). Manifold relevance determination. In ICML (pp. 145–152).
-
(2012)
In ICML
, pp. 145-152
-
-
Damianou, A.1
Ek, C.2
Titsias, M.3
Lawrence, N.4
-
21
-
-
56449100417
-
-
Dembczyński, K., Kotłowski, W., & Słowiński, R. (2008). Maximum likelihood rule ensembles. In ICML (pp. 224–231). ACM
-
Dembczyński, K., Kotłowski, W., & Słowiński, R. (2008). Maximum likelihood rule ensembles. In ICML (pp. 224–231). ACM
-
-
-
-
22
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1–30.
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
24
-
-
0013396180
-
Bayesian averaging of classifiers and the overfitting problem
-
Domingos, P. (2000). Bayesian averaging of classifiers and the overfitting problem. In ICML (pp. 223–230).
-
(2000)
In ICML
, pp. 223-230
-
-
Domingos, P.1
-
25
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2), 103–130.
-
(1997)
Machine Learning
, vol.29
, Issue.2
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
26
-
-
0011772719
-
Using the m-estimate in rule induction
-
Džeroski, S., Cestnik, B., & Petrovski, I. (1993). Using the m-estimate in rule induction. Journal of Computing and Information Technology, 1(1), 37–46.
-
(1993)
Journal of Computing and Information Technology
, vol.1
, Issue.1
, pp. 37-46
-
-
Džeroski, S.1
Cestnik, B.2
Petrovski, I.3
-
27
-
-
57849113257
-
-
Ek, C. H., Rihan, J., Torr, P. H., Rogez, G., & Lawrence, N. D. (2008). Ambiguity modeling in latent spaces. In Machine learning for multimodal interaction (pp. 62–73). Springer
-
Ek, C. H., Rihan, J., Torr, P. H., Rogez, G., & Lawrence, N. D. (2008). Ambiguity modeling in latent spaces. In Machine learning for multimodal interaction (pp. 62–73). Springer
-
-
-
-
28
-
-
84867577175
-
The foundations of cost-sensitive learning
-
Elkan, C. (2001). The foundations of cost-sensitive learning. In IJCAI (Vol. 17, pp. 973–978).
-
(2001)
In IJCAI
, vol.17
, pp. 973-978
-
-
Elkan, C.1
-
29
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
30
-
-
0013113240
-
Adaptive fraud detection
-
Fawcett, T., & Provost, F. (1997). Adaptive fraud detection. Data Mining and Knowledge Discovery, 1(3), 291–316.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.3
, pp. 291-316
-
-
Fawcett, T.1
Provost, F.2
-
31
-
-
0002593344
-
Multi-interval discretization of continuous-valued attributes for classification learning
-
Fayyad, U., & Irani, K. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. In IJCAI (pp. 1022–1029).
-
(1993)
In IJCAI
, pp. 1022-1029
-
-
Fayyad, U.1
Irani, K.2
-
33
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
34
-
-
0033075882
-
Separate-and-conquer rule learning
-
Fürnkranz, J. (1999). Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1), 3–54.
-
(1999)
Artificial Intelligence Review
, vol.13
, Issue.1
, pp. 3-54
-
-
Fürnkranz, J.1
-
36
-
-
84862515469
-
A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches
-
Galar, M., Fernández, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(4), 463–484.
-
(2012)
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
, vol.42
, Issue.4
, pp. 463-484
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
37
-
-
84942376252
-
-
Gama, J. (2000). A cost-sensitive iterative Bayes. In ICML
-
Gama, J. (2000). A cost-sensitive iterative Bayes. In ICML.
-
-
-
-
39
-
-
68549133155
-
Learning from imbalanced data
-
He, H., & Garcia, E. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.
-
(2009)
IEEE Transactions on Knowledge and Data Engineering
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.2
-
40
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte, R. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63–91.
-
(1993)
Machine Learning
, vol.11
, pp. 63-91
-
-
Holte, R.1
-
41
-
-
84949479983
-
-
Japkowicz, N. (2001). Concept-learning in the presence of between-class and within-class imbalances. In Advances in artificial intelligence (pp. 67–77). Springer
-
Japkowicz, N. (2001). Concept-learning in the presence of between-class and within-class imbalances. In Advances in artificial intelligence (pp. 67–77). Springer
-
-
-
-
42
-
-
33845536164
-
The class imbalance problem: A systematic study
-
Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5), 429–449.
-
(2002)
Intelligent Data Analysis
, vol.6
, Issue.5
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
45
-
-
0011900636
-
Combining decisions of multiple rules
-
Kononenko, I. (1992). Combining decisions of multiple rules. In AIMSA (pp. 87–96).
-
(1992)
In AIMSA
, pp. 87-96
-
-
Kononenko, I.1
-
46
-
-
0034922742
-
Machine learning for medical diagnosis: History, state of the art and perspective
-
Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine, 23(1), 89–109.
-
(2001)
Artificial Intelligence in Medicine
, vol.23
, Issue.1
, pp. 89-109
-
-
Kononenko, I.1
-
47
-
-
36749047332
-
Supervised machine learning: A review of classification techniques
-
Kotsiantis, S. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.
-
(2007)
Informatica
, vol.31
, pp. 249-268
-
-
Kotsiantis, S.1
-
48
-
-
0001972236
-
Addressing the curse of imbalanced training sets: One-sided selection
-
Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced training sets: One-sided selection. In ICML (pp. 179–186).
-
(1997)
In ICML
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
49
-
-
84947918649
-
Learning when negative examples abound
-
Kubat, M., Holte, R., & Matwin, S. (1997). Learning when negative examples abound. In ECML (pp. 146–153).
-
(1997)
In ECML
, pp. 146-153
-
-
Kubat, M.1
Holte, R.2
Matwin, S.3
-
50
-
-
0032895111
-
Selected techniques for data mining in medicine
-
Lavrač, N. (1999). Selected techniques for data mining in medicine. Artificial Intelligence in Medicine, 16(1), 3–23.
-
(1999)
Artificial Intelligence in Medicine
, vol.16
, Issue.1
, pp. 3-23
-
-
Lavrač, N.1
-
52
-
-
0036146454
-
The problem of bias in training data in regression problems in medical decision support
-
Mac Namee, B., Cunningham, P., Byrne, S., & Corrigan, O. (2002). The problem of bias in training data in regression problems in medical decision support. Artificial Intelligence in Medicine, 24(1), 51–70.
-
(2002)
Artificial Intelligence in Medicine
, vol.24
, Issue.1
, pp. 51-70
-
-
Mac Namee, B.1
Cunningham, P.2
Byrne, S.3
Corrigan, O.4
-
53
-
-
50549085684
-
SGERD: A steady-state genetic algorithm for extracting fuzzy classification rules from data
-
Mansoori, E., Zolghadri, M., & Katebi, S. (2008). SGERD: A steady-state genetic algorithm for extracting fuzzy classification rules from data. IEEE Transactions on Fuzzy Systems, 16(4), 1061–1071.
-
(2008)
IEEE Transactions on Fuzzy Systems
, vol.16
, Issue.4
, pp. 1061-1071
-
-
Mansoori, E.1
Zolghadri, M.2
Katebi, S.3
-
54
-
-
77956548044
-
Risk minimization, probability elicitation, and cost-sensitive SVMs
-
Masnadi-Shirazi, H., & Vasconcelos, N. (2010). Risk minimization, probability elicitation, and cost-sensitive SVMs. In ICML (pp. 204–213).
-
(2010)
In ICML
, pp. 204-213
-
-
Masnadi-Shirazi, H.1
Vasconcelos, N.2
-
55
-
-
0001059008
-
The multi-purpose incremental learning system AQ15 and its testing application to three medical domains
-
Michalski, R. S., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. In Proc AAAI (pp. 1–41).
-
(1986)
In Proc AAAI
, pp. 1-41
-
-
Michalski, R.S.1
Mozetic, I.2
Hong, J.3
Lavrac, N.4
-
56
-
-
85018142797
-
Bayesian model averaging is not model combination (pp
-
Minka, T. P. (2000). Bayesian model averaging is not model combination (pp. 1–2). http://research.microsoft.com/en-us/um/people/minka/papers/minka-bma-isnt-mc
-
(2000)
1–2
-
-
Minka, T.P.1
-
58
-
-
0029405527
-
Rough sets
-
Pawlak, Z., Grzymala-Busse, J., Slowinski, R., & Ziarko, W. (1995). Rough sets. Communications of the ACM, 38(11), 88–95.
-
(1995)
Communications of the ACM
, vol.38
, Issue.11
, pp. 88-95
-
-
Pawlak, Z.1
Grzymala-Busse, J.2
Slowinski, R.3
Ziarko, W.4
-
59
-
-
84942376255
-
-
Pearson, R., Goney, G., & Shwaber, J. (2003). Imbalanced clustering for microarray time-series. In ICML
-
Pearson, R., Goney, G., & Shwaber, J. (2003). Imbalanced clustering for microarray time-series. In ICML.
-
-
-
-
61
-
-
37849053727
-
Margin-based first-order rule learning
-
Rückert, U., & Kramer, S. (2008). Margin-based first-order rule learning. Machine Learning, 70(2–3), 189–206.
-
(2008)
Machine Learning
, vol.70
, Issue.2-3
, pp. 189-206
-
-
Rückert, U.1
Kramer, S.2
-
62
-
-
77950404059
-
Learning shared latent structure for image synthesis and robotic imitation
-
Shon, A., Grochow, K., Hertzmann, A., & Rao, R. P. (2005). Learning shared latent structure for image synthesis and robotic imitation. In Advances in neural information processing systems (pp. 1233–1240).
-
(2005)
In Advances in neural information processing systems
, pp. 1233-1240
-
-
Shon, A.1
Grochow, K.2
Hertzmann, A.3
Rao, R.P.4
-
63
-
-
0002865353
-
On rough set based approaches to induction of decision rules
-
Stefanowski, J. (1998). On rough set based approaches to induction of decision rules. Rough Sets in Knowledge Discovery, 1(1), 500–529.
-
(1998)
Rough Sets in Knowledge Discovery
, vol.1
, Issue.1
, pp. 500-529
-
-
Stefanowski, J.1
-
64
-
-
33747062126
-
Rough sets for handling imbalanced data: Combining filtering and rule-based classifiers
-
Stefanowski, J., & Wilk, S. (2006). Rough sets for handling imbalanced data: Combining filtering and rule-based classifiers. Fundamenta Informaticae, 72(1), 379–391.
-
(2006)
Fundamenta Informaticae
, vol.72
, Issue.1
, pp. 379-391
-
-
Stefanowski, J.1
Wilk, S.2
-
65
-
-
77954953206
-
Explanation and reliability of prediction models: The case of breast cancer recurrence
-
Štrumbelj, E., Bosnić, Z., Kononenko, I., Zakotnik, B., & Grašič Kuhar, C. (2010). Explanation and reliability of prediction models: The case of breast cancer recurrence. Knowledge and Information Systems, 24(2), 305–324.
-
(2010)
Knowledge and Information Systems
, vol.24
, Issue.2
, pp. 305-324
-
-
Štrumbelj, E.1
Bosnić, Z.2
Kononenko, I.3
Zakotnik, B.4
Grašič Kuhar, C.5
-
66
-
-
0035735751
-
Generalization, similarity, and Bayesian inference
-
Tenenbaum, J., & Griffiths, T. (2001). Generalization, similarity, and Bayesian inference. Behavioral and Brain Sciences, 24(4), 629–640.
-
(2001)
Behavioral and Brain Sciences
, vol.24
, Issue.4
, pp. 629-640
-
-
Tenenbaum, J.1
Griffiths, T.2
-
67
-
-
84874190632
-
Decision rules extraction from data stream in the presence of changing context for diabetes treatment
-
Tomczak, J., & Gonczarek, A. (2013). Decision rules extraction from data stream in the presence of changing context for diabetes treatment. Knowledge and Information Systems, 34, 521–546.
-
(2013)
Knowledge and Information Systems
, vol.34
, pp. 521-546
-
-
Tomczak, J.1
Gonczarek, A.2
-
68
-
-
79958785529
-
Empirical evaluation methods for multiobjective reinforcement learning algorithms
-
Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., & Dekker, E. (2011). Empirical evaluation methods for multiobjective reinforcement learning algorithms. Machine Learning, 84(1–2), 51–80.
-
(2011)
Machine Learning
, vol.84
, Issue.1-2
, pp. 51-80
-
-
Vamplew, P.1
Dazeley, R.2
Berry, A.3
Issabekov, R.4
Dekker, E.5
-
70
-
-
79960133608
-
-
Vorontsov, K., & Ivahnenko, A. (2011). Tight combinatorial generalization bounds for threshold conjunction rules. In Pattern recognition and machine intelligence (pp. 66–73). Springer
-
Vorontsov, K., & Ivahnenko, A. (2011). Tight combinatorial generalization bounds for threshold conjunction rules. In Pattern recognition and machine intelligence (pp. 66–73). Springer
-
-
-
-
71
-
-
79960089996
-
Krimp: Mining itemsets that compress
-
Vreeken, J., Van Leeuwen, M., & Siebes, A. (2011). Krimp: Mining itemsets that compress. Data Mining and Knowledge Discovery, 23(1), 169–214.
-
(2011)
Data Mining and Knowledge Discovery
, vol.23
, Issue.1
, pp. 169-214
-
-
Vreeken, J.1
Van Leeuwen, M.2
Siebes, A.3
-
72
-
-
77957583037
-
Boosting support vector machines for imbalanced data sets
-
Wang, B., & Japkowicz, N. (2010). Boosting support vector machines for imbalanced data sets. Knowledge and Information Systems, 25(1), 1–20.
-
(2010)
Knowledge and Information Systems
, vol.25
, Issue.1
, pp. 1-20
-
-
Wang, B.1
Japkowicz, N.2
-
73
-
-
0026692226
-
Stacked generalization
-
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.H.1
-
74
-
-
0003259364
-
Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
-
Zadrozny, B., & Elkan, C. (2001). Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In ICML (pp. 609–616).
-
(2001)
In ICML
, pp. 609-616
-
-
Zadrozny, B.1
Elkan, C.2
-
75
-
-
84888298686
-
Boosted SVM for extracting rules from imbalance data in application to prediction of the post-operative life expectancy in the lung cancer patients
-
Zięba, M., Tomczak, J. M., Lubicz, M., & Świątek, J. (2014). Boosted SVM for extracting rules from imbalance data in application to prediction of the post-operative life expectancy in the lung cancer patients. Applied Soft Computing, 14, 99–108.
-
(2014)
Applied Soft Computing
, vol.14
, pp. 99-108
-
-
Zięba, M.1
Tomczak, J.M.2
Lubicz, M.3
Świątek, J.4
|