-
1
-
-
78149299589
-
Online algorithms for finding profile association rules
-
Bethesda, Maryland, USA
-
Aggarwal, C. C., Sun, Z., & Yu, P. S. (1998). Online algorithms for finding profile association rules. In Proceedings of the 1998 ACM CIKM 7th International Conference on Information and Knowledge Management (pp. 86-95). Bethesda, Maryland, USA.
-
(1998)
Proceedings of the 1998 ACM CIKM 7th International Conference on Information and Knowledge Management
, pp. 86-95
-
-
Aggarwal, C.C.1
Sun, Z.2
Yu, P.S.3
-
4
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
Washington, D.C
-
Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (pp. 207-216). Washington, D.C.
-
(1993)
Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
5
-
-
0001882616
-
Fast algorithms for mining association rules
-
Santiago de Chile, Chile
-
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In VLDB'94, Proceedings of 20th International Conference on Very Large Data Bases (pp. 487-499). Santiago de Chile, Chile.
-
(1994)
VLDB'94, Proceedings of 20th International Conference on Very Large Data Bases
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
6
-
-
0013114804
-
Partial classification using association rules
-
Newport Beach, California, USA
-
Ali, K., Manganaris, S., & Srikant, R. (1997). Partial classification using association rules. In Proceedings of the 3rd International Conference on Knowledge Discovery in Databases and Data Mining (pp. 115-118). Newport Beach, California, USA.
-
(1997)
Proceedings of the 3rd International Conference on Knowledge Discovery in Databases and Data Mining
, pp. 115-118
-
-
Ali, K.1
Manganaris, S.2
Srikant, R.3
-
7
-
-
0001681372
-
A statistical theory for quantitative association rules
-
San Diego, California, USA
-
Aumann, Y., & Lindell, Y. (1999). A statistical theory for quantitative association rules. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 261-270). San Diego, California, USA.
-
(1999)
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 261-270
-
-
Aumann, Y.1
Lindell, Y.2
-
8
-
-
0035311255
-
TBAR: An efficient method for association rule mining in relational databases
-
Berzal, F., Cubero, J. C., Marín, N., & Serrano, J. M. (2001). TBAR: An efficient method for association rule mining in relational databases. Data & Knowledge Engineering, 37:1, 47-64.
-
(2001)
Data & Knowledge Engineering
, vol.37
, Issue.1
, pp. 47-64
-
-
Berzal, F.1
Cubero, J.C.2
Marín, N.3
Serrano, J.M.4
-
9
-
-
0003802343
-
-
Wadsworth, California, USA
-
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. Wadsworth, California, USA.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
10
-
-
0031162961
-
Dynamic itemset counting and implication rules for market basket data
-
Tucson, Arizona, USA
-
Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication rules for market basket data. In Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 255-264). Tucson, Arizona, USA.
-
(1997)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 255-264
-
-
Brin, S.1
Motwani, R.2
Ullman, J.D.3
Tsur, S.4
-
12
-
-
85015191605
-
Rule induction with CN2: Some recent improvements
-
Y. Kodratoff (ed.). Berlin: Springer-Verlag
-
Clark, P., & Boswell, R. (1991). Rule induction with CN2: Some recent improvements. In Y. Kodratoff (ed.), Machine Learning - EWSL-91 (pp. 151-163). Berlin: Springer-Verlag.
-
(1991)
Machine Learning - EWSL-91
, pp. 151-163
-
-
Clark, P.1
Boswell, R.2
-
13
-
-
34249966007
-
The CN2 induction algorithm
-
Clark, P., & Nibblett, T. (1989). The CN2 induction algorithm. Machine Learning Journal (Kluwer Academic Publishers), 3:4, 261-183.
-
(1989)
Machine Learning Journal (Kluwer Academic Publishers)
, vol.3
, Issue.4
, pp. 261-183
-
-
Clark, P.1
Nibblett, T.2
-
17
-
-
22844456607
-
The role of Occam's Razor in knowledge discovery
-
Domingos, P. (1999). The role of Occam's Razor in knowledge discovery. Data Mining and Knowledge Discovery, 3:4, 409-425.
-
(1999)
Data Mining and Knowledge Discovery
, vol.3
, Issue.4
, pp. 409-425
-
-
Domingos, P.1
-
19
-
-
35048837125
-
CAEP: Classification by aggregating emerging patterns
-
Tokyo, Japan
-
Dong, G., Zhang, X., Wong, L., & Li, J. (1999). CAEP: Classification by aggregating emerging patterns. In Proceedings of the Second International Conference on Discovery Science (pp. 30-42). Tokyo, Japan.
-
(1999)
Proceedings of the Second International Conference on Discovery Science
, pp. 30-42
-
-
Dong, G.1
Zhang, X.2
Wong, L.3
Li, J.4
-
21
-
-
0242647897
-
Understanding the crucial differences between classification and discovery of association rules - A position paper
-
Freitas, A. A. (2000). Understanding the crucial differences between classification and discovery of association rules - A position paper. SIGKDD Explorations, 2:1, 65-69.
-
(2000)
SIGKDD Explorations
, vol.2
, Issue.1
, pp. 65-69
-
-
Freitas, A.A.1
-
23
-
-
0346457323
-
BOAT - Optimistic decision tree construction
-
Philadelphia, PA, USA
-
Gehrke, J., Ganti, V., Ramakrishnan, R., & Loh, W.-Y. (1999a). BOAT - optimistic decision tree construction. In Proceedings of the 1999 ACM SIGMOD international conference on Management of Data (pp. 169-180). Philadelphia, PA, USA.
-
(1999)
Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data
, pp. 169-180
-
-
Gehrke, J.1
Ganti, V.2
Ramakrishnan, R.3
Loh, W.-Y.4
-
24
-
-
85029539302
-
Classification and regression: Money can grow on trees
-
San Diego, California, USA
-
Gehrke, J., Loh, W.-Y., & Ramakrishnan, R. (1999b). Classification and regression: Money can grow on trees. In Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining (pp. 1-73). San Diego, California, USA.
-
(1999)
Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining
, pp. 1-73
-
-
Gehrke, J.1
Loh, W.-Y.2
Ramakrishnan, R.3
-
25
-
-
23044519492
-
RainForest-A framework for fast decision tree construction of large datasets
-
Gehrke, J. Ramakrishnan, R., & Ganti, V. (2000). RainForest-A framework for fast decision tree construction of large datasets. Data Mining and Knowledge Discovery, 4:2/3, 127-162.
-
(2000)
Data Mining and Knowledge Discovery
, vol.4
, Issue.2-3
, pp. 127-162
-
-
Gehrke, J.1
Ramakrishnan, R.2
Ganti, V.3
-
26
-
-
0000662737
-
Search-intensive concept induction
-
Giordana, A., & Neri, F. (1996). Search-intensive concept induction. Evolutionary Computation, 3:4, 375-416.
-
(1996)
Evolutionary Computation
, vol.3
, Issue.4
, pp. 375-416
-
-
Giordana, A.1
Neri, F.2
-
27
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
Dallas, TX, USA
-
Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (pp. 1-12). Dallas, TX, USA.
-
(2000)
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
28
-
-
0030399010
-
Background for association rules and cost estimate of selected mining algorithms
-
Rockville, Maryland, USA
-
Han, J. L., & Plank, A. W. (1996). Background for association rules and cost estimate of selected mining algorithms. In CIKM '96, Proceedings of the Fifth International Conference on Information and Knowledge Management (pp. 73-80). Rockville, Maryland, USA.
-
(1996)
CIKM '96, Proceedings of the Fifth International Conference on Information and Knowledge Management
, pp. 73-80
-
-
Han, J.L.1
Plank, A.W.2
-
30
-
-
0002784345
-
Algorithms for association rule mining - A general survey and comparison
-
Hipp, J., Güntzer, U., & Nakhaeizadeh, G. (2000). Algorithms for association rule mining - A general survey and comparison. SIGKDD Explorations, 2:1, 58-64.
-
(2000)
SIGKDD Explorations
, vol.2
, Issue.1
, pp. 58-64
-
-
Hipp, J.1
Güntzer, U.2
Nakhaeizadeh, G.3
-
31
-
-
0003832201
-
-
IBM Research Report RJ9567, IBM Almaden Research Center, San Jose, California
-
Houtsma, M., & Swami, A. (1993). Set-oriented mining for association rules. IBM Research Report RJ9567, IBM Almaden Research Center, San Jose, California.
-
(1993)
Set-oriented Mining for Association Rules
-
-
Houtsma, M.1
Swami, A.2
-
32
-
-
0034825778
-
Mining needles in a haystack: Classifying rare classes via two-phase rule induction
-
Santa Barbara, California
-
Joshi, M. V., Agarwal, R. C., & Kumar, V. (2001). Mining needles in a haystack: Classifying rare classes via two-phase rule induction. In Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data (pp. 91-101). Santa Barbara, California.
-
(2001)
Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data
, pp. 91-101
-
-
Joshi, M.V.1
Agarwal, R.C.2
Kumar, V.3
-
33
-
-
0013090042
-
Getting started with Aspect
-
Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., & Griswold, W. G. (2001). Getting started with Aspect. J. Communications of the ACM, 44:10, 59-65.
-
(2001)
J. Communications of the ACM
, vol.44
, Issue.10
, pp. 59-65
-
-
Kiczales, G.1
Hilsdale, E.2
Hugunin, J.3
Kersten, M.4
Palm, J.5
Griswold, W.G.6
-
34
-
-
84948104699
-
Integrating classification and association rule mining
-
New York City, USA
-
Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule mining. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98) (pp. 80-86). New York City, USA.
-
(1998)
Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98)
, pp. 80-86
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
35
-
-
84896481519
-
Intuitive representation of decision trees using general rules and exceptions
-
Austin, Texas
-
Liu, B., Hu, M., & Hsu, W. (2000a) Intuitive representation of decision trees using general rules and exceptions. In Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000). Austin, Texas.
-
(2000)
Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000)
-
-
Liu, B.1
Hu, M.2
Hsu, W.3
-
36
-
-
0034593061
-
Multi-level organization and summarization of the discovered rule
-
Boston, MA, USA
-
Liu, B., Hu, M., & Hsu, W. (2000b) Multi-level organization and summarization of the discovered rule. In Proceedings of the sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 208-217). Boston, MA, USA.
-
(2000)
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 208-217
-
-
Liu, B.1
Hu, M.2
Hsu, W.3
-
37
-
-
14844366331
-
Improving an association rule based classifier
-
Lyon, France
-
Liu, B., Ma, Y., & Wong, C. K. (2000c). Improving an association rule based classifier. In Proceedings of the Fourth European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD-2000). Lyon, France.
-
(2000)
Proceedings of the Fourth European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD-2000)
-
-
Liu, B.1
Ma, Y.2
Wong, C.K.3
-
38
-
-
0031312210
-
Split selection methods for classification trees
-
Loh, W.-Y., & Shih, Y.-S. (1997). Split selection methods for classification trees. Statistica Sinica, 7, 815-840.
-
(1997)
Statistica Sinica
, vol.7
, pp. 815-840
-
-
Loh, W.-Y.1
Shih, Y.-S.2
-
39
-
-
84897674228
-
SLIQ: A fast scalable classifier for data mining
-
Avignon, France
-
Mehta, M., Agrawal, R., & Rissanen, J. (1996). SLIQ: A fast scalable classifier for data mining. Advances in Database Technology - Proceedings of the Fifth International Conference on Extending Database Technology (EDBT'96) (pp. 18-32). Avignon, France.
-
(1996)
Advances in Database Technology - Proceedings of the Fifth International Conference on Extending Database Technology (EDBT'96)
, pp. 18-32
-
-
Mehta, M.1
Agrawal, R.2
Rissanen, J.3
-
40
-
-
0013392343
-
Extending naïve Bayes classifiers using long itemsets
-
San Diego, CA, USA
-
Meretakis, D., & Wüthrich, B. (1999). Extending naïve Bayes classifiers using long itemsets. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 165-174). San Diego, CA, USA.
-
(1999)
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 165-174
-
-
Meretakis, D.1
Wüthrich, B.2
-
41
-
-
0031162287
-
Association rules over interval data
-
Tucson, AZ, USA
-
Miller, R. J., & Yang, Y. (1997). Association rules over interval data. In Proceedings of the ACM SIGMOD Conference on Management of Data (pp. 452-461). Tucson, AZ, USA.
-
(1997)
Proceedings of the ACM SIGMOD Conference on Management of Data
, pp. 452-461
-
-
Miller, R.J.1
Yang, Y.2
-
42
-
-
0025389210
-
Boolean feature discovery in empirical learning
-
Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning, 5, 71-99.
-
(1990)
Machine Learning
, vol.5
, pp. 71-99
-
-
Pagallo, G.1
Haussler, D.2
-
43
-
-
84976830511
-
An effective hash-based algorithm for mining association rules
-
San Jose, California
-
Park, J. S., Chen, M. S., & Yu, P. S. (1995). An effective hash-based algorithm for mining association rules. In Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data (pp. 175-186). San Jose, California.
-
(1995)
Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data
, pp. 175-186
-
-
Park, J.S.1
Chen, M.S.2
Yu, P.S.3
-
44
-
-
0031220368
-
Using a hash-based method with transaction trimming for mining association rules
-
Park, J. S., Chen, M. S., & Yu, P. S. (1997). Using a hash-based method with transaction trimming for mining association rules. IEEE Transactions on Knowledge and Data Engineering, 9:5, 813-825.
-
(1997)
IEEE Transactions on Knowledge and Data Engineering
, vol.9
, Issue.5
, pp. 813-825
-
-
Park, J.S.1
Chen, M.S.2
Yu, P.S.3
-
45
-
-
33744584654
-
Induction on decision trees
-
Quinlan, J. R. (1986a). Induction on decision trees. Machine Learning, 1, 81-106.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
46
-
-
0002899794
-
Learning Decision Tree Classifiers
-
Quinlan, J. R. (1986b). Learning Decision Tree Classifiers. ACM Computing Surveys, 28:1, 71-72.
-
(1986)
ACM Computing Surveys
, vol.28
, Issue.1
, pp. 71-72
-
-
Quinlan, J.R.1
-
48
-
-
1442267080
-
Learning decision lists
-
Rivest, R. L. (1987). Learning decision lists. Machine Learning Journal, 2:3, 229-246.
-
(1987)
Machine Learning Journal
, vol.2
, Issue.3
, pp. 229-246
-
-
Rivest, R.L.1
-
49
-
-
0028566773
-
Learning decision lists using homogeneous rules
-
Seattle, WA, USA
-
Segal, R., & Etzioni, O. (1994). Learning decision lists using homogeneous rules. AAAI 1994, 12th National Conference on Artificial Intelligence (pp. 619-625). Seattle, WA, USA.
-
(1994)
AAAI 1994, 12th National Conference on Artificial Intelligence
, pp. 619-625
-
-
Segal, R.1
Etzioni, O.2
-
51
-
-
0030157416
-
Mining quantitative association rules in large relational tables
-
Montreal, Quebec, Canada
-
Srikant, R., & Agrawal, R. (1996). Mining quantitative association rules in large relational tables. In Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data (pp. 1-12). Montreal, Quebec, Canada.
-
(1996)
Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data
, pp. 1-12
-
-
Srikant, R.1
Agrawal, R.2
-
52
-
-
0002621626
-
PUBLIC: A decision tree classifier that integrates building and pruning
-
New York City, New York, USA
-
Rastogi, R., & Shim, K. (1998). PUBLIC: A decision tree classifier that integrates building and pruning. In VLDB'98, Proceedings of 24th International Conference on Very Large Data Bases (pp. 404-415). New York City, New York, USA.
-
(1998)
VLDB'98, Proceedings of 24th International Conference on Very Large Data Bases
, pp. 404-415
-
-
Rastogi, R.1
Shim, K.2
-
53
-
-
0002139432
-
SPRINT: A scalable parallel classifier for data mining
-
Mumbai (Bombay), India
-
Shafer, J. C., Agrawal, R., & Mehta, M. (1996). SPRINT: A scalable parallel classifier for data mining. In VLDB'96, Proceedings of 22nd International Conference on Very Large Data Bases (pp. 544-555). Mumbai (Bombay), India.
-
(1996)
VLDB'96, Proceedings of 22nd International Conference on Very Large Data Bases
, pp. 544-555
-
-
Shafer, J.C.1
Agrawal, R.2
Mehta, M.3
-
54
-
-
0034592911
-
Growing decision trees on support-less association rules
-
Boston, MA, USA
-
Wang, K., Zhou, S., & He, Y. (2000). Growing decision trees on support-less association rules. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 265-269). Boston, MA, USA.
-
(2000)
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 265-269
-
-
Wang, K.1
Zhou, S.2
He, Y.3
-
55
-
-
0000370733
-
Building hierarchical classifiers using class proximity
-
Edinburgh, Scotland, UK
-
Wang, K., Zhou, S., & Liew, S. C. (1999). Building hierarchical classifiers using class proximity. In VLDB'99, Proceedings of 25th International Conference on Very Large Data Bases (pp. 363-374). Edinburgh, Scotland, UK.
-
(1999)
VLDB'99, Proceedings of 25th International Conference on Very Large Data Bases
, pp. 363-374
-
-
Wang, K.1
Zhou, S.2
Liew, S.C.3
-
56
-
-
0033699346
-
Constructing X-of-N attributes for decision tree learning
-
Zheng, Z. (2000). Constructing X-of-N attributes for decision tree learning. Machine Learning, 40:1, 35-75.
-
(2000)
Machine Learning
, vol.40
, Issue.1
, pp. 35-75
-
-
Zheng, Z.1
|