메뉴 건너뛰기




Volumn 54, Issue 1, 2004, Pages 67-92

ART: A Hybrid Classification Model

Author keywords

Association rules; Classification; Data Mining; Decision lists; Decision trees; Supervised learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; DATABASE SYSTEMS; DECISION THEORY; GENETIC ALGORITHMS; HYBRID COMPUTERS; KNOWLEDGE BASED SYSTEMS; MATHEMATICAL MODELS; POLYNOMIALS; PROBLEM SOLVING; REGRESSION ANALYSIS; TREES (MATHEMATICS);

EID: 0942277347     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:MACH.0000008085.22487.a6     Document Type: Article
Times cited : (41)

References (56)
  • 8
    • 0035311255 scopus 로고    scopus 로고
    • TBAR: An efficient method for association rule mining in relational databases
    • Berzal, F., Cubero, J. C., Marín, N., & Serrano, J. M. (2001). TBAR: An efficient method for association rule mining in relational databases. Data & Knowledge Engineering, 37:1, 47-64.
    • (2001) Data & Knowledge Engineering , vol.37 , Issue.1 , pp. 47-64
    • Berzal, F.1    Cubero, J.C.2    Marín, N.3    Serrano, J.M.4
  • 12
    • 85015191605 scopus 로고
    • Rule induction with CN2: Some recent improvements
    • Y. Kodratoff (ed.). Berlin: Springer-Verlag
    • Clark, P., & Boswell, R. (1991). Rule induction with CN2: Some recent improvements. In Y. Kodratoff (ed.), Machine Learning - EWSL-91 (pp. 151-163). Berlin: Springer-Verlag.
    • (1991) Machine Learning - EWSL-91 , pp. 151-163
    • Clark, P.1    Boswell, R.2
  • 17
    • 22844456607 scopus 로고    scopus 로고
    • The role of Occam's Razor in knowledge discovery
    • Domingos, P. (1999). The role of Occam's Razor in knowledge discovery. Data Mining and Knowledge Discovery, 3:4, 409-425.
    • (1999) Data Mining and Knowledge Discovery , vol.3 , Issue.4 , pp. 409-425
    • Domingos, P.1
  • 21
    • 0242647897 scopus 로고    scopus 로고
    • Understanding the crucial differences between classification and discovery of association rules - A position paper
    • Freitas, A. A. (2000). Understanding the crucial differences between classification and discovery of association rules - A position paper. SIGKDD Explorations, 2:1, 65-69.
    • (2000) SIGKDD Explorations , vol.2 , Issue.1 , pp. 65-69
    • Freitas, A.A.1
  • 25
    • 23044519492 scopus 로고    scopus 로고
    • RainForest-A framework for fast decision tree construction of large datasets
    • Gehrke, J. Ramakrishnan, R., & Ganti, V. (2000). RainForest-A framework for fast decision tree construction of large datasets. Data Mining and Knowledge Discovery, 4:2/3, 127-162.
    • (2000) Data Mining and Knowledge Discovery , vol.4 , Issue.2-3 , pp. 127-162
    • Gehrke, J.1    Ramakrishnan, R.2    Ganti, V.3
  • 26
    • 0000662737 scopus 로고    scopus 로고
    • Search-intensive concept induction
    • Giordana, A., & Neri, F. (1996). Search-intensive concept induction. Evolutionary Computation, 3:4, 375-416.
    • (1996) Evolutionary Computation , vol.3 , Issue.4 , pp. 375-416
    • Giordana, A.1    Neri, F.2
  • 30
    • 0002784345 scopus 로고    scopus 로고
    • Algorithms for association rule mining - A general survey and comparison
    • Hipp, J., Güntzer, U., & Nakhaeizadeh, G. (2000). Algorithms for association rule mining - A general survey and comparison. SIGKDD Explorations, 2:1, 58-64.
    • (2000) SIGKDD Explorations , vol.2 , Issue.1 , pp. 58-64
    • Hipp, J.1    Güntzer, U.2    Nakhaeizadeh, G.3
  • 31
    • 0003832201 scopus 로고
    • IBM Research Report RJ9567, IBM Almaden Research Center, San Jose, California
    • Houtsma, M., & Swami, A. (1993). Set-oriented mining for association rules. IBM Research Report RJ9567, IBM Almaden Research Center, San Jose, California.
    • (1993) Set-oriented Mining for Association Rules
    • Houtsma, M.1    Swami, A.2
  • 38
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Loh, W.-Y., & Shih, Y.-S. (1997). Split selection methods for classification trees. Statistica Sinica, 7, 815-840.
    • (1997) Statistica Sinica , vol.7 , pp. 815-840
    • Loh, W.-Y.1    Shih, Y.-S.2
  • 42
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning, 5, 71-99.
    • (1990) Machine Learning , vol.5 , pp. 71-99
    • Pagallo, G.1    Haussler, D.2
  • 44
    • 0031220368 scopus 로고    scopus 로고
    • Using a hash-based method with transaction trimming for mining association rules
    • Park, J. S., Chen, M. S., & Yu, P. S. (1997). Using a hash-based method with transaction trimming for mining association rules. IEEE Transactions on Knowledge and Data Engineering, 9:5, 813-825.
    • (1997) IEEE Transactions on Knowledge and Data Engineering , vol.9 , Issue.5 , pp. 813-825
    • Park, J.S.1    Chen, M.S.2    Yu, P.S.3
  • 45
    • 33744584654 scopus 로고
    • Induction on decision trees
    • Quinlan, J. R. (1986a). Induction on decision trees. Machine Learning, 1, 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 46
    • 0002899794 scopus 로고
    • Learning Decision Tree Classifiers
    • Quinlan, J. R. (1986b). Learning Decision Tree Classifiers. ACM Computing Surveys, 28:1, 71-72.
    • (1986) ACM Computing Surveys , vol.28 , Issue.1 , pp. 71-72
    • Quinlan, J.R.1
  • 48
    • 1442267080 scopus 로고
    • Learning decision lists
    • Rivest, R. L. (1987). Learning decision lists. Machine Learning Journal, 2:3, 229-246.
    • (1987) Machine Learning Journal , vol.2 , Issue.3 , pp. 229-246
    • Rivest, R.L.1
  • 56
    • 0033699346 scopus 로고    scopus 로고
    • Constructing X-of-N attributes for decision tree learning
    • Zheng, Z. (2000). Constructing X-of-N attributes for decision tree learning. Machine Learning, 40:1, 35-75.
    • (2000) Machine Learning , vol.40 , Issue.1 , pp. 35-75
    • Zheng, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.