메뉴 건너뛰기




Volumn 39, Issue 3, 2015, Pages 407-428

Learning state representations with robotic priors

Author keywords

Prior knowledge; Reinforcement learning; Representation learning; Robot learning

Indexed keywords

ROBOT LEARNING; ROBOTICS; ROBOTS;

EID: 84941943714     PISSN: 09295593     EISSN: 15737527     Source Type: Journal    
DOI: 10.1007/s10514-015-9459-7     Document Type: Article
Times cited : (209)

References (36)
  • 2
    • 80052249260 scopus 로고    scopus 로고
    • Closing the learning-planning loop with predictive state representations
    • Boots, B., Siddiqi, S. M., & Gordon, G. J. (2011). Closing the learning-planning loop with predictive state representations. International Journal of Robotics Research, 30(7), 954–966.
    • (2011) International Journal of Robotics Research , vol.30 , Issue.7 , pp. 954-966
    • Boots, B.1    Siddiqi, S.M.2    Gordon, G.J.3
  • 4
    • 84905233565 scopus 로고    scopus 로고
    • Abstraction from demonstration for efficient reinforcement learning in high-dimensional domains
    • Cobo, L. C., Subramanian, K., Isbell, C. L, Jr, Lanterman, A. D., & Thomaz, A. L. (2014). Abstraction from demonstration for efficient reinforcement learning in high-dimensional domains. Artificial Intelligence, 216(1), 103–128.
    • (2014) Artificial Intelligence , vol.216 , Issue.1 , pp. 103-128
    • Cobo, L.C.1    Subramanian, K.2    Isbell, C.L.3    Lanterman, A.D.4    Thomaz, A.L.5
  • 6
    • 84872530807 scopus 로고    scopus 로고
    • Solving partially observable reinforcement learning problems with recurrent neural networks
    • Montavon G, Orr G, Müller K-R, (eds), 7700, Heidelberg: Springer, Berli
    • Duell, S., Udluft, S., & Sterzing, V. (2012). Solving partially observable reinforcement learning problems with recurrent neural networks. In G. Montavon, G. Orr, & K.-R. Müller (Eds.), Neural Networks: Tricks of the trade. Lecture notes in computer science (Vol. 7700, pp. 709–733). Berlin: Heidelberg: Springer.
    • (2012) Neural Networks: Tricks of the trade. Lecture notes in computer science , pp. 709-733
    • Duell, S.1    Udluft, S.2    Sterzing, V.3
  • 8
    • 79956157781 scopus 로고    scopus 로고
    • Using slow feature analysis to extract behavioural manifolds related to humanoid robot postures
    • Höfer, S., Hild, M., Kubisch, M. (2010). Using slow feature analysis to extract behavioural manifolds related to humanoid robot postures. In 10th international conference on epigenetic robotics (pp. 43–50).
    • (2010) In 10th international conference on epigenetic robotics , pp. 43-50
    • Höfer, S.1    Hild, M.2    Kubisch, M.3
  • 9
    • 77954141070 scopus 로고    scopus 로고
    • Feature reinforcement learning: Part I: Unstructured MDPs
    • Hutter, M. (2009). Feature reinforcement learning: Part I: Unstructured MDPs. Journal of Artificial General Intelligence, 1(1), 3–24.
    • (2009) Journal of Artificial General Intelligence , vol.1 , Issue.1 , pp. 3-24
    • Hutter, M.1
  • 10
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved RPROP learning algorithms
    • Igel, C., & Hüsken, M. (2003). Empirical evaluation of the improved RPROP learning algorithms. Neurocomputing, 50(1), 105–123.
    • (2003) Neurocomputing , vol.50 , Issue.1 , pp. 105-123
    • Igel, C.1    Hüsken, M.2
  • 12
    • 84941939932 scopus 로고    scopus 로고
    • Jetchev, N., Lang, T., Toussaint, M. (2013). Learning grounded relational symbols from continuous data for abstract reasoning. In Autonomous learning workshop at the IEEE international conference on robotics and automation
    • Jetchev, N., Lang, T., Toussaint, M. (2013). Learning grounded relational symbols from continuous data for abstract reasoning. In Autonomous learning workshop at the IEEE international conference on robotics and automation.
  • 13
    • 84941942437 scopus 로고    scopus 로고
    • Jonschkowski, R., Brock, O. (2013). Learning task-specific state representations by maximizing slowness and predictability. In 6th international workshop on evolutionary and reinforcement learning for autonomous robot systems (ERLARS)
    • Jonschkowski, R., Brock, O. (2013). Learning task-specific state representations by maximizing slowness and predictability. In 6th international workshop on evolutionary and reinforcement learning for autonomous robot systems (ERLARS).
  • 14
    • 84941935168 scopus 로고    scopus 로고
    • Jonschkowski, R., & Brock, O. (2014). State representation learning in robotics: Using prior knowledge about physical interaction. In Robotics: Science and Systems (RSS)
    • Jonschkowski, R., & Brock, O. (2014). State representation learning in robotics: Using prior knowledge about physical interaction. In Robotics: Science and Systems (RSS).
  • 15
    • 0032073263 scopus 로고    scopus 로고
    • Planning and acting in partially observable stochastic domains
    • Kaelbling, L. P., & Littman, M. L. (1998). Planning and acting in partially observable stochastic domains. Artificial intelligence, 101(1), 99–134.
    • (1998) Artificial intelligence , vol.101 , Issue.1 , pp. 99-134
    • Kaelbling, L.P.1    Littman, M.L.2
  • 19
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
    • Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27.
    • (1964) Psychometrika , vol.29 , Issue.1 , pp. 1-27
    • Kruskal, J.B.1
  • 21
    • 78049417739 scopus 로고    scopus 로고
    • Reinforcement learning on slow features of high-dimensional input streams
    • Legenstein, R., Wilbert, N., & Wiskott, L. (2010). Reinforcement learning on slow features of high-dimensional input streams. PLoS Computational Biology, 6(8), e1000894.
    • (2010) PLoS Computational Biology , vol.6 , Issue.8 , pp. e1000894
    • Legenstein, R.1    Wilbert, N.2    Wiskott, L.3
  • 24
    • 35748957806 scopus 로고    scopus 로고
    • Proto-value functions: A laplacian framework for learning representation and control in markov decision processes
    • Mahadevan, S., & Maggioni, M. (2007). Proto-value functions: A laplacian framework for learning representation and control in markov decision processes. Journal of Machine Learning Research, 8(10), 2169–2231.
    • (2007) Journal of Machine Learning Research , vol.8 , Issue.10 , pp. 2169-2231
    • Mahadevan, S.1    Maggioni, M.2
  • 25
    • 17444414191 scopus 로고    scopus 로고
    • Basis function adaptation in temporal difference reinforcement learning
    • Menache, I., Mannor, S., & Shimkin, N. (2005). Basis function adaptation in temporal difference reinforcement learning. Annals of Operations Research, 134(1), 215–238.
    • (2005) Annals of Operations Research , vol.134 , Issue.1 , pp. 215-238
    • Menache, I.1    Mannor, S.2    Shimkin, N.3
  • 27
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 28
    • 84919788574 scopus 로고    scopus 로고
    • Scholz, J., Levihn, M., Isbell, C., Wingate, D. (2014). A physics-based model prior for object-oriented MDPs. In 31st international conference on machine learning (ICML)
    • Scholz, J., Levihn, M., Isbell, C., Wingate, D. (2014). A physics-based model prior for object-oriented MDPs. In 31st international conference on machine learning (ICML).
  • 29
    • 84865801985 scopus 로고    scopus 로고
    • Conversational speech transcription using context-dependent deep neural networks
    • Seide, F., Li, G., Yu, D. (2011). Conversational speech transcription using context-dependent deep neural networks. In Interspeech (pp. 437–440).
    • (2011) In Interspeech , pp. 437-440
    • Seide, F.1    Li, G.2    Yu, D.3
  • 30
    • 0023223978 scopus 로고
    • Toward a universal law of generalization for psychological science
    • Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237(4820), 1317–1323.
    • (1987) Science , vol.237 , Issue.4820 , pp. 1317-1323
    • Shepard, R.N.1
  • 34
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 35
    • 84911005218 scopus 로고    scopus 로고
    • Efficient abstraction selection in reinforcement learning
    • van Seijen, H., Whiteson, S., & Kester, L. J. H. M. (2014). Efficient abstraction selection in reinforcement learning. Computational Intelligence, 30(4), 657–699.
    • (2014) Computational Intelligence , vol.30 , Issue.4 , pp. 657-699
    • van Seijen, H.1    Whiteson, S.2    Kester, L.J.H.M.3
  • 36
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • Wiskott, L., & Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 14(4), 715–770.
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.