-
1
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y., Courville, A. C., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.C.2
Vincent, P.3
-
2
-
-
80052249260
-
Closing the learning-planning loop with predictive state representations
-
Boots, B., Siddiqi, S. M., & Gordon, G. J. (2011). Closing the learning-planning loop with predictive state representations. International Journal of Robotics Research, 30(7), 954–966.
-
(2011)
International Journal of Robotics Research
, vol.30
, Issue.7
, pp. 954-966
-
-
Boots, B.1
Siddiqi, S.M.2
Gordon, G.J.3
-
4
-
-
84905233565
-
Abstraction from demonstration for efficient reinforcement learning in high-dimensional domains
-
Cobo, L. C., Subramanian, K., Isbell, C. L, Jr, Lanterman, A. D., & Thomaz, A. L. (2014). Abstraction from demonstration for efficient reinforcement learning in high-dimensional domains. Artificial Intelligence, 216(1), 103–128.
-
(2014)
Artificial Intelligence
, vol.216
, Issue.1
, pp. 103-128
-
-
Cobo, L.C.1
Subramanian, K.2
Isbell, C.L.3
Lanterman, A.D.4
Thomaz, A.L.5
-
5
-
-
80053558787
-
Natural language processing (almost) from scratch
-
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, Koray, & Kuksa, Pavel. (2011). Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12(8), 2493–2537.
-
(2011)
Journal of Machine Learning Research
, vol.12
, Issue.8
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.6
-
6
-
-
84872530807
-
Solving partially observable reinforcement learning problems with recurrent neural networks
-
Montavon G, Orr G, Müller K-R, (eds), 7700, Heidelberg: Springer, Berli
-
Duell, S., Udluft, S., & Sterzing, V. (2012). Solving partially observable reinforcement learning problems with recurrent neural networks. In G. Montavon, G. Orr, & K.-R. Müller (Eds.), Neural Networks: Tricks of the trade. Lecture notes in computer science (Vol. 7700, pp. 709–733). Berlin: Heidelberg: Springer.
-
(2012)
Neural Networks: Tricks of the trade. Lecture notes in computer science
, pp. 709-733
-
-
Duell, S.1
Udluft, S.2
Sterzing, V.3
-
9
-
-
77954141070
-
Feature reinforcement learning: Part I: Unstructured MDPs
-
Hutter, M. (2009). Feature reinforcement learning: Part I: Unstructured MDPs. Journal of Artificial General Intelligence, 1(1), 3–24.
-
(2009)
Journal of Artificial General Intelligence
, vol.1
, Issue.1
, pp. 3-24
-
-
Hutter, M.1
-
10
-
-
0037238922
-
Empirical evaluation of the improved RPROP learning algorithms
-
Igel, C., & Hüsken, M. (2003). Empirical evaluation of the improved RPROP learning algorithms. Neurocomputing, 50(1), 105–123.
-
(2003)
Neurocomputing
, vol.50
, Issue.1
, pp. 105-123
-
-
Igel, C.1
Hüsken, M.2
-
12
-
-
84941939932
-
-
Jetchev, N., Lang, T., Toussaint, M. (2013). Learning grounded relational symbols from continuous data for abstract reasoning. In Autonomous learning workshop at the IEEE international conference on robotics and automation
-
Jetchev, N., Lang, T., Toussaint, M. (2013). Learning grounded relational symbols from continuous data for abstract reasoning. In Autonomous learning workshop at the IEEE international conference on robotics and automation.
-
-
-
-
13
-
-
84941942437
-
-
Jonschkowski, R., Brock, O. (2013). Learning task-specific state representations by maximizing slowness and predictability. In 6th international workshop on evolutionary and reinforcement learning for autonomous robot systems (ERLARS)
-
Jonschkowski, R., Brock, O. (2013). Learning task-specific state representations by maximizing slowness and predictability. In 6th international workshop on evolutionary and reinforcement learning for autonomous robot systems (ERLARS).
-
-
-
-
14
-
-
84941935168
-
-
Jonschkowski, R., & Brock, O. (2014). State representation learning in robotics: Using prior knowledge about physical interaction. In Robotics: Science and Systems (RSS)
-
Jonschkowski, R., & Brock, O. (2014). State representation learning in robotics: Using prior knowledge about physical interaction. In Robotics: Science and Systems (RSS).
-
-
-
-
15
-
-
0032073263
-
Planning and acting in partially observable stochastic domains
-
Kaelbling, L. P., & Littman, M. L. (1998). Planning and acting in partially observable stochastic domains. Artificial intelligence, 101(1), 99–134.
-
(1998)
Artificial intelligence
, vol.101
, Issue.1
, pp. 99-134
-
-
Kaelbling, L.P.1
Littman, M.L.2
-
16
-
-
84884276459
-
Reinforcement learning in robotics: A survey
-
Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. International Journal of Robotics Research, 32(11), 1238–1274.
-
(2013)
International Journal of Robotics Research
, vol.32
, Issue.11
, pp. 1238-1274
-
-
Kober, J.1
Bagnell, J.A.2
Peters, J.3
-
19
-
-
0041654220
-
Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
-
Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27.
-
(1964)
Psychometrika
, vol.29
, Issue.1
, pp. 1-27
-
-
Kruskal, J.B.1
-
21
-
-
78049417739
-
Reinforcement learning on slow features of high-dimensional input streams
-
Legenstein, R., Wilbert, N., & Wiskott, L. (2010). Reinforcement learning on slow features of high-dimensional input streams. PLoS Computational Biology, 6(8), e1000894.
-
(2010)
PLoS Computational Biology
, vol.6
, Issue.8
, pp. e1000894
-
-
Legenstein, R.1
Wilbert, N.2
Wiskott, L.3
-
24
-
-
35748957806
-
Proto-value functions: A laplacian framework for learning representation and control in markov decision processes
-
Mahadevan, S., & Maggioni, M. (2007). Proto-value functions: A laplacian framework for learning representation and control in markov decision processes. Journal of Machine Learning Research, 8(10), 2169–2231.
-
(2007)
Journal of Machine Learning Research
, vol.8
, Issue.10
, pp. 2169-2231
-
-
Mahadevan, S.1
Maggioni, M.2
-
25
-
-
17444414191
-
Basis function adaptation in temporal difference reinforcement learning
-
Menache, I., Mannor, S., & Shimkin, N. (2005). Basis function adaptation in temporal difference reinforcement learning. Annals of Operations Research, 134(1), 215–238.
-
(2005)
Annals of Operations Research
, vol.134
, Issue.1
, pp. 215-238
-
-
Menache, I.1
Mannor, S.2
Shimkin, N.3
-
26
-
-
79952136450
-
Learning visual representations for perception-action systems
-
Piater, J., Jodogne, S., Detry, R., Kraft, D., Krüger, Norbert, Kroemer, Oliver, et al. (2011). Learning visual representations for perception-action systems. International Journal of Robotics Research, 30(3), 294–307.
-
(2011)
International Journal of Robotics Research
, vol.30
, Issue.3
, pp. 294-307
-
-
Piater, J.1
Jodogne, S.2
Detry, R.3
Kraft, D.4
Krüger, N.5
Kroemer, O.6
Peters, J.7
-
27
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
28
-
-
84919788574
-
-
Scholz, J., Levihn, M., Isbell, C., Wingate, D. (2014). A physics-based model prior for object-oriented MDPs. In 31st international conference on machine learning (ICML)
-
Scholz, J., Levihn, M., Isbell, C., Wingate, D. (2014). A physics-based model prior for object-oriented MDPs. In 31st international conference on machine learning (ICML).
-
-
-
-
29
-
-
84865801985
-
Conversational speech transcription using context-dependent deep neural networks
-
Seide, F., Li, G., Yu, D. (2011). Conversational speech transcription using context-dependent deep neural networks. In Interspeech (pp. 437–440).
-
(2011)
In Interspeech
, pp. 437-440
-
-
Seide, F.1
Li, G.2
Yu, D.3
-
30
-
-
0023223978
-
Toward a universal law of generalization for psychological science
-
Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237(4820), 1317–1323.
-
(1987)
Science
, vol.237
, Issue.4820
, pp. 1317-1323
-
-
Shepard, R.N.1
-
34
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
35
-
-
84911005218
-
Efficient abstraction selection in reinforcement learning
-
van Seijen, H., Whiteson, S., & Kester, L. J. H. M. (2014). Efficient abstraction selection in reinforcement learning. Computational Intelligence, 30(4), 657–699.
-
(2014)
Computational Intelligence
, vol.30
, Issue.4
, pp. 657-699
-
-
van Seijen, H.1
Whiteson, S.2
Kester, L.J.H.M.3
-
36
-
-
0036546660
-
Slow feature analysis: Unsupervised learning of invariances
-
Wiskott, L., & Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 14(4), 715–770.
-
(2002)
Neural Computation
, vol.14
, Issue.4
, pp. 715-770
-
-
Wiskott, L.1
Sejnowski, T.J.2
|