메뉴 건너뛰기




Volumn 30, Issue 7, 2011, Pages 954-966

Closing the learning-planning loop with predictive state representations

Author keywords

Latent variable discovery; Planning under uncertainty; Point based value iteration; POMDPs; Predictive state representations; Singular value decomposition; Subspace identification

Indexed keywords

LATENT VARIABLE; PLANNING UNDER UNCERTAINTY; POINT-BASED VALUE ITERATIONS; POMDPS; PREDICTIVE STATE REPRESENTATION; SINGULAR VALUES; SUBSPACE IDENTIFICATION;

EID: 80052249260     PISSN: 02783649     EISSN: 17413176     Source Type: Journal    
DOI: 10.1177/0278364911404092     Document Type: Conference Paper
Times cited : (180)

References (37)
  • 6
    • 80052191460 scopus 로고    scopus 로고
    • Point-based planning for predictive state representations
    • IzadiMT and Precup D (2008) Point-based planning for predictive state representations. In Proceedings of Canadian AI.
    • (2008) Proceedings of Canadian AI
    • Precup, D.1
  • 7
    • 0034198996 scopus 로고    scopus 로고
    • Observable operator models for discrete stochastic time series
    • Jaeger H (2000) Observable operator models for discrete stochastic time series. Neural Computation 12: 1371-1398.
    • (2000) Neural Computation , vol.12 , pp. 1371-1398
    • Jaeger, H.1
  • 9
    • 33750704593 scopus 로고    scopus 로고
    • Improving approximate value iteration using memories and predictive state representations
    • James MR, Wessling T and Vlassis NA (2006) Improving approximate value iteration using memories and predictive state representations. In Proceedings of AAAI.
    • (2006) Proceedings of AAAI
    • James, M.R.1    Wessling, T.2    Vlassis, N.A.3
  • 11
    • 0028324717 scopus 로고
    • Cryptographic limitations on learning boolean formulae and finite automata
    • Kearns M and Valiant L (1994) Cryptographic limitations on learning boolean formulae and finite automata. Journal of the ACM 41: 67-95.
    • (1994) Journal of the ACM , vol.41 , pp. 67-95
    • Kearns, M.1    Valiant, L.2
  • 14
    • 84864070408 scopus 로고    scopus 로고
    • Online discovery and learning of predictive state representations
    • McCracken P and Bowling M (2005) Online discovery and learning of predictive state representations. In Proceedings of NIPS.
    • (2005) Proceedings of NIPS
    • McCracken, P.1    Bowling, M.2
  • 17
    • 84880772945 scopus 로고    scopus 로고
    • Point-based value iteration: An anytime algorithm for POMDPs
    • Pineau J, Gordon G and Thrun S (2003) Point-based value iteration: An anytime algorithm for POMDPs. In Proceedings of IJCAI.
    • (2003) Proceedings of IJCAI
    • Pineau, J.1    Gordon, G.2    Thrun, S.3
  • 20
    • 77955213275 scopus 로고    scopus 로고
    • Model-based Bayesian reinforcement learning in large structured domains
    • Ross S and Pineau J (2008) Model-based Bayesian reinforcement learning in large structured domains. In Proceedings of UAI.
    • (2008) Proceedings of UAI
    • Ross, S.1    Pineau, J.2
  • 24
    • 31844457132 scopus 로고    scopus 로고
    • Predictive state representations: A new theory for modeling dynamical systems
    • Singh S, James M and Rudary M (2004) Predictive state representations: A new theory for modeling dynamical systems. In Proceedings of UAI.
    • (2004) Proceedings of UAI
    • Singh, S.1    James, M.2    Rudary, M.3
  • 28
  • 32
    • 31844439543 scopus 로고    scopus 로고
    • Learning predictive representations from a history
    • Wiewiora E (2005) Learning predictive representations from a history. In Proceedings of ICML.
    • (2005) Proceedings of ICML
    • Wiewiora, E.1
  • 34
    • 60349110114 scopus 로고    scopus 로고
    • On discovery and learning of models with predictive representations of state for agents with continuous actions and observations
    • Wingate D and Singh S (2007) On discovery and learning of models with predictive representations of state for agents with continuous actions and observations. In Proceedings of AAMAS.
    • (2007) Proceedings of AAMAS
    • Wingate, D.1    Singh, S.2
  • 35
    • 56449115195 scopus 로고    scopus 로고
    • Efficiently learning linear-linear exponential family predictive representations of state
    • Wingate D and Singh S (2008) Efficiently learning linear-linear exponential family predictive representations of state. In Proceedings of ICML.
    • (2008) Proceedings of ICML
    • Wingate, D.1    Singh, S.2
  • 36
    • 31844453029 scopus 로고    scopus 로고
    • Learning predictive state representations in dynamical systems without reset
    • Wolfe B, James M and Singh S (2005) Learning predictive state representations in dynamical systems without reset. In Proceedings of ICML.
    • (2005) Proceedings of ICML
    • Wolfe, B.1    James, M.2    Singh, S.3
  • 37
    • 70349239285 scopus 로고    scopus 로고
    • A bound on modeling error in observable operator models and an associated learning algorithm
    • in press
    • Zhao M, Jaeger H and Thon M (2009) A bound on modeling error in observable operator models and an associated learning algorithm. Neural Computation, in press.
    • (2009) Neural Computation
    • Zhao, M.1    Jaeger, H.2    Thon, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.