메뉴 건너뛰기




Volumn 7553 LNCS, Issue PART 2, 2012, Pages 279-287

Low complexity proto-value function learning from sensory observations with incremental slow feature analysis

Author keywords

Biologically Inspired Reinforcement Learning; Incremental Slow Feature Analysis; Proto Value Functions

Indexed keywords

ADJACENCY MATRICES; BASIS SETS; BIOLOGICALLY INSPIRED; FUNCTION LEARNING; HIGH-DIMENSIONAL; LINEAR APPROXIMATIONS; SENSORY INPUT; SLOW FEATURE ANALYSIS; SPACE AND TIME; TRANSITION MODEL; VALUE FUNCTION APPROXIMATION; VALUE FUNCTIONS;

EID: 84867667632     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-33266-1_35     Document Type: Conference Paper
Times cited : (18)

References (22)
  • 1
    • 0001771345 scopus 로고    scopus 로고
    • Linear least-squares algorithms for temporal difference learning
    • Bradtke, S.J., Barto, A.G.: Linear least-squares algorithms for temporal difference learning. Machine Learning 22(1), 33-57 (1996)
    • (1996) Machine Learning , vol.22 , Issue.1 , pp. 33-57
    • Bradtke, S.J.1    Barto, A.G.2
  • 5
    • 38149008840 scopus 로고    scopus 로고
    • Restricted gradient-descent algorithm for value-function approximation in reinforcement learning
    • da Motta Salles Barreto, A., Anderson, C.W.: Restricted gradient-descent algorithm for value-function approximation in reinforcement learning. Artificial Intelligence 172(4-5), 454-482 (2008)
    • (2008) Artificial Intelligence , vol.172 , Issue.4-5 , pp. 454-482
    • Da Motta Salles Barreto, A.1    Anderson, C.W.2
  • 8
    • 34548412214 scopus 로고    scopus 로고
    • Slowness and sparseness lead to place, head-direction, and spatial-view cells
    • Franzius, M., Sprekeler, H., Wiskott, L.: Slowness and sparseness lead to place, head-direction, and spatial-view cells. PLoS Computational Biology 3(8), e166 (2007)
    • (2007) PLoS Computational Biology , vol.3 , Issue.8
    • Franzius, M.1    Sprekeler, H.2    Wiskott, L.3
  • 9
    • 84867687400 scopus 로고    scopus 로고
    • Incremental slow feature analysis: Adaptive low-complexity slow feature updating from high-dimensional input streams
    • accepted and to appear
    • Kompella, V.R., Luciw, M.D., Schmidhuber, J.: Incremental slow feature analysis: Adaptive low-complexity slow feature updating from high-dimensional input streams. Neural Computation (accepted and to appear, 2012)
    • (2012) Neural Computation
    • Kompella, V.R.1    Luciw, M.D.2    Schmidhuber, J.3
  • 12
    • 78049417739 scopus 로고    scopus 로고
    • Reinforcement learning on slow features of high-dimensional input streams
    • Legenstein, R., Wilbert, N., Wiskott, L.: Reinforcement learning on slow features of high-dimensional input streams. PLoS Computational Biology 6(8) (2010)
    • (2010) PLoS Computational Biology , vol.6 , Issue.8
    • Legenstein, R.1    Wilbert, N.2    Wiskott, L.3
  • 16
    • 17444414191 scopus 로고    scopus 로고
    • Basis function adaptation in temporal difference reinforcement learning
    • Menache, I., Mannor, S., Shimkin, N.: Basis function adaptation in temporal difference reinforcement learning. Annals of Operations Research 134(1), 215-238 (2005)
    • (2005) Annals of Operations Research , vol.134 , Issue.1 , pp. 215-238
    • Menache, I.1    Mannor, S.2    Shimkin, N.3
  • 17
    • 0031231885 scopus 로고    scopus 로고
    • Experiments with reinforcement learning in problems with continuous state and action spaces
    • Santamaria, J.C., Sutton, R.S., Ram, A.: Experiments with reinforcement learning in problems with continuous state and action spaces. Adaptive Behavior 6(2), 163 (1997)
    • (1997) Adaptive Behavior , vol.6 , Issue.2 , pp. 163
    • Santamaria, J.C.1    Sutton, R.S.2    Ram, A.3
  • 18
    • 0001623105 scopus 로고
    • A local learning algorithm for dynamic feedforward and recurrent networks
    • Schmidhuber, J.: A local learning algorithm for dynamic feedforward and recurrent networks. Connection Science 1(4), 403-412 (1989)
    • (1989) Connection Science , vol.1 , Issue.4 , pp. 403-412
    • Schmidhuber, J.1
  • 20
    • 84856370602 scopus 로고    scopus 로고
    • On the relation of slow feature analysis and laplacian eigenmaps
    • Sprekeler, H.: On the relation of slow feature analysis and laplacian eigenmaps. Neural Computation, 1-16 (2011)
    • (2011) Neural Computation , pp. 1-16
    • Sprekeler, H.1
  • 22
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • Wiskott, L., Sejnowski, T.: Slow feature analysis: Unsupervised learning of invariances. Neural Computation 14(4), 715-770 (2002)
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.