-
1
-
-
84858766876
-
Exploring Large Feature Spaces With Hierarchical Multiple Kernel Learning
-
Koller D., Schuurmans D., Bengio Y., Bottou L., (eds), Cambridge, MA: MIT Press
-
F.Bach, (2008), “Exploring Large Feature Spaces With Hierarchical Multiple Kernel Learning,” in Advances in Neural Information Processing Systems (number 21), eds. D.Koller, D.Schuurmans, Y.Bengio, and L.Bottou, Cambridge, MA: MIT Press, pp. 105–112.
-
(2008)
Advances in Neural Information Processing Systems (number 21)
, pp. 105-112
-
-
Bach, F.1
-
2
-
-
85014561619
-
A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
-
A.Beck,, and M.Teboulle, (2009), “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems,” SIAM Journal on Imaging Sciences, 2, 183–202.
-
(2009)
SIAM Journal on Imaging Sciences
, vol.2
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
3
-
-
84856004485
-
Templates for Convex Cone Problems With Applications to Sparse Signal Recovery
-
S.R.Becker,, E.J.Candes,, and M.C.Grant, (2011), “Templates for Convex Cone Problems With Applications to Sparse Signal Recovery,” Mathematical Programming Computation, 3, 165–218.
-
(2011)
Mathematical Programming Computation
, vol.3
, pp. 165-218
-
-
Becker, S.R.1
Candes, E.J.2
Grant, M.C.3
-
4
-
-
84879398938
-
A Lasso for Hierarchical Interactions
-
J.Bien,, J.Taylor,, and R.Tibshirani, (2013), “A Lasso for Hierarchical Interactions,” The Annals of Statistics, 41, 1111–1141.
-
(2013)
The Annals of Statistics
, vol.41
, pp. 1111-1141
-
-
Bien, J.1
Taylor, J.2
Tibshirani, R.3
-
5
-
-
80052880887
-
Methods for Identifying snp Interactions: A Review on Variations of Logic Regression, Random Forest and Bayesian Logistic Regression
-
C.Chen,, H.Schwender,, J.Keith,, R.Nunkesser,, K.Mengersen,, and P.Macrossan, (2011), “Methods for Identifying snp Interactions: A Review on Variations of Logic Regression, Random Forest and Bayesian Logistic Regression,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8, 1580–1591.
-
(2011)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.8
, pp. 1580-1591
-
-
Chen, C.1
Schwender, H.2
Keith, J.3
Nunkesser, R.4
Mengersen, K.5
Macrossan, P.6
-
6
-
-
84983110889
-
A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting
-
EuroCOLT ’95, London, UK: Springer-Verlag
-
Y.Freund,, and R.E.Schapire, (1995), “A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting,” in Proceedings of the Second European Conference on Computational Learning Theory, EuroCOLT ’95, London, UK: Springer-Verlag, pp. 23–37.
-
(1995)
Proceedings of the Second European Conference on Computational Learning Theory
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.E.2
-
7
-
-
0035470889
-
Greedy Function Approximation: A Gradient Boosting Machine
-
J.H.Friedman, (2001), “Greedy Function Approximation: A Gradient Boosting Machine,” The Annals of Statistics, 29, 1189–1232.
-
(2001)
The Annals of Statistics
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
8
-
-
71149113559
-
Group Lasso With Overlap and Graph Lasso
-
ICML ’09, New York, NY: ACM
-
L.Jacob,, G.Obozinski,, and J.-P.Vert, (2009), “Group Lasso With Overlap and Graph Lasso,” in Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, New York, NY: ACM, pp. 433–440.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 433-440
-
-
Jacob, L.1
Obozinski, G.2
Vert, J.-P.3
-
10
-
-
38049072586
-
Genetic Analysis Workshop 15: Simulation of a Complex Genetic Model for Rheumatoid Arthritis in Nuclear Families Including a Dense snp Map With Linkage Disequilibrium Between Marker Loci and Trait Loci
-
M.Miller,, G.Lind,, N.Li,, and S.-Y.Jang, (2007), “Genetic Analysis Workshop 15: Simulation of a Complex Genetic Model for Rheumatoid Arthritis in Nuclear Families Including a Dense snp Map With Linkage Disequilibrium Between Marker Loci and Trait Loci,” BMC Proceedings, 1–7, S4.
-
(2007)
BMC Proceedings
, vol.1-7
, pp. 4
-
-
Miller, M.1
Lind, G.2
Li, N.3
Jang, S.-Y.4
-
12
-
-
78651289934
-
Variable Selection Using Adaptive Non-Linear Interaction Structures in High Dimensions
-
P.Radchenko,, and G.James, (2010), “Variable Selection Using Adaptive Non-Linear Interaction Structures in High Dimensions,” Journal of the American Statistical Association, 105, 1541–1553.
-
(2010)
Journal of the American Statistical Association
, vol.105
, pp. 1541-1553
-
-
Radchenko, P.1
James, G.2
-
13
-
-
84862290026
-
A Regularization Approach to Nonlinear Variable Selection
-
L.Rosasco,, M.Santoro,, S.Mosci,, A.Verri,, and S.Villa, (2010), “A Regularization Approach to Nonlinear Variable Selection,” in AISTATS 2010 Proceedings (Vol. 9 of Journal of Machine Learning Research), pp. 653–660.
-
(2010)
AISTATS 2010 Proceedings (Vol. 9 of Journal of Machine Learning Research)
, pp. 653-660
-
-
Rosasco, L.1
Santoro, M.2
Mosci, S.3
Verri, A.4
Villa, S.5
-
14
-
-
0141872478
-
Logic Regression
-
I.Ruczinski,, C.Kooperberg,, and M.LeBlanc, (2003), “Logic Regression,” Journal of Computational and Graphical Statistics, 12, 475–511.
-
(2003)
Journal of Computational and Graphical Statistics
, vol.12
, pp. 475-511
-
-
Ruczinski, I.1
Kooperberg, C.2
LeBlanc, M.3
-
16
-
-
37249085147
-
Identification of snp Interactions Using Logic Regression
-
H.Schwender,, and K.Ickstadt, (2008), “Identification of snp Interactions Using Logic Regression,” Biostatistics, 9, 187–198.
-
(2008)
Biostatistics
, vol.9
, pp. 187-198
-
-
Schwender, H.1
Ickstadt, K.2
-
17
-
-
84882287077
-
A Sparse-Group Lasso
-
N.Simon,, J.Friedman,, T.Hastie,, and R.Tibshirani, (2013), “A Sparse-Group Lasso,” Journal of Computational and Graphical Statistics, 22, 231–245.
-
(2013)
Journal of Computational and Graphical Statistics
, vol.22
, pp. 231-245
-
-
Simon, N.1
Friedman, J.2
Hastie, T.3
Tibshirani, R.4
-
18
-
-
85194972808
-
Regression Shrinkage and Selection via the Lasso
-
R.Tibshirani, (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society, Series B, 58, 267–288.
-
(1996)
Journal of the Royal Statistical Society, Series B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
19
-
-
84858280765
-
Strong Rules for Discarding Predictors in Lasso-Type Problems
-
R.Tibshirani,, J.Bien,, J.Friedman,, T.Hastie,, N.Simon,, J.Taylor,, and R.J.Tibshirani, (2012), “Strong Rules for Discarding Predictors in Lasso-Type Problems,” Journal of the Royal Statistical Society, Series B,
-
(2012)
Journal of the Royal Statistical Society, Series B
-
-
Tibshirani, R.1
Bien, J.2
Friedman, J.3
Hastie, T.4
Simon, N.5
Taylor, J.6
Tibshirani, R.J.7
-
20
-
-
33645035051
-
Model Selection and Estimation in Regression With Grouped Variables
-
M.Yuan,, and Y.Lin, (2006), “Model Selection and Estimation in Regression With Grouped Variables,” Journal of the Royal Statistical Society, Series B, 68, 49–67.
-
(2006)
Journal of the Royal Statistical Society, Series B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
21
-
-
69949155103
-
Grouped and Hierarchical Model Selection Through Composite Absolute Penalties
-
P.Zhao,, G.Rocha,, and B.Yu, (2009), “Grouped and Hierarchical Model Selection Through Composite Absolute Penalties,” The Annals of Statistics, 37, 3468–3497.
-
(2009)
The Annals of Statistics
, vol.37
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
|