-
1
-
-
77949392974
-
Prevalence of a history of skin cancer in 2007: results of an incidence-based model
-
Stern RS. Prevalence of a history of skin cancer in 2007: results of an incidence-based model. Arch Dermatol. 2010;146:279-82.
-
(2010)
Arch Dermatol
, vol.146
, pp. 279-282
-
-
Stern, R.S.1
-
2
-
-
80054826924
-
Recent trends in cutaneous melanoma incidence and death rates in the United States, 1992-2006
-
Jemal A, Saraiya M, Patel P, Cherala SS, Barnholtz-Sloan J, Kim J, et al. Recent trends in cutaneous melanoma incidence and death rates in the United States, 1992-2006. J Am Acad Dermatol. 2011;65:S17-25.
-
(2011)
J Am Acad Dermatol
, vol.65
, pp. S17-S25
-
-
Jemal, A.1
Saraiya, M.2
Patel, P.3
Cherala, S.S.4
Barnholtz-Sloan, J.5
Kim, J.6
-
3
-
-
42949155244
-
Epidemiology of melanoma and nonmelanoma skin cancer--the role of sunlight
-
Leiter U, Garbe C. Epidemiology of melanoma and nonmelanoma skin cancer--the role of sunlight. Adv Exp Med Biol. 2008;624:89-103.
-
(2008)
Adv Exp Med Biol
, vol.624
, pp. 89-103
-
-
Leiter, U.1
Garbe, C.2
-
5
-
-
14644433816
-
Ultraviolet radiation-mediated damage to cellular DNA
-
Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res. 2005;571:3-17.
-
(2005)
Mutat Res
, vol.571
, pp. 3-17
-
-
Cadet, J.1
Sage, E.2
Douki, T.3
-
6
-
-
0036557024
-
UV-induced DNA damage and repair: a review
-
Sinha RP, Hader DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. 2002;1:225-36.
-
(2002)
Photochem Photobiol Sci
, vol.1
, pp. 225-236
-
-
Sinha, R.P.1
Hader, D.P.2
-
7
-
-
0035472817
-
Direct and indirect effects of UV radiation on DNA and its components
-
Ravanat JL, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B. 2001;63:88-102.
-
(2001)
J Photochem Photobiol B
, vol.63
, pp. 88-102
-
-
Ravanat, J.L.1
Douki, T.2
Cadet, J.3
-
8
-
-
84896336815
-
From DNA repair to proteome protection: new molecular insights for preventing non-melanoma skin cancers and skin aging
-
Emanuele E, Spencer JM, Braun M. From DNA repair to proteome protection: new molecular insights for preventing non-melanoma skin cancers and skin aging. J Drugs Dermatol. 2014;13:274-81.
-
(2014)
J Drugs Dermatol
, vol.13
, pp. 274-281
-
-
Emanuele, E.1
Spencer, J.M.2
Braun, M.3
-
9
-
-
84861424680
-
Sunscreens: are they beneficial for health? An overview of endocrine disrupting properties of UV-filters
-
Krause M, Klit A, Blomberg JM, Soeborg T, Frederiksen H, Schlumpf M, et al. Sunscreens: are they beneficial for health? An overview of endocrine disrupting properties of UV-filters. Int J Androl. 2012;35:424-36.
-
(2012)
Int J Androl
, vol.35
, pp. 424-436
-
-
Krause, M.1
Klit, A.2
Blomberg, J.M.3
Soeborg, T.4
Frederiksen, H.5
Schlumpf, M.6
-
10
-
-
83755228711
-
Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness
-
Smijs TG, Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl. 2011;4:95-112.
-
(2011)
Nanotechnol Sci Appl
, vol.4
, pp. 95-112
-
-
Smijs, T.G.1
Pavel, S.2
-
11
-
-
84880964950
-
Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro
-
Ghosh M, Chakraborty A, Mukherjee A. Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro. J Appl Toxicol. 2013;33:1097-110.
-
(2013)
J Appl Toxicol
, vol.33
, pp. 1097-1110
-
-
Ghosh, M.1
Chakraborty, A.2
Mukherjee, A.3
-
12
-
-
84875489407
-
Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation
-
Yu KN, Yoon TJ, Minai-Tehrani A, Kim JE, Park SJ, Jeong MS, et al. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol In Vitro. 2013;27:1187-95.
-
(2013)
Toxicol In Vitro
, vol.27
, pp. 1187-1195
-
-
Yu, K.N.1
Yoon, T.J.2
Minai-Tehrani, A.3
Kim, J.E.4
Park, S.J.5
Jeong, M.S.6
-
13
-
-
37049000154
-
Nanosilver: a nanoproduct in medical application
-
Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176:1-12.
-
(2008)
Toxicol Lett
, vol.176
, pp. 1-12
-
-
Chen, X.1
Schluesener, H.J.2
-
15
-
-
77955234397
-
Silver nanoparticles as a safe preservative for use in cosmetics
-
Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine. 2010;6:570-4.
-
(2010)
Nanomedicine
, vol.6
, pp. 570-574
-
-
Kokura, S.1
Handa, O.2
Takagi, T.3
Ishikawa, T.4
Naito, Y.5
Yoshikawa, T.6
-
16
-
-
84896990181
-
Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells
-
Miethling-Graff R, Rumpker R, Richter M, Verano-Braga T, Kjeldsen F, Brewer J, et al. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol In Vitro. 2014;28:1280-9.
-
(2014)
Toxicol In Vitro
, vol.28
, pp. 1280-1289
-
-
Miethling-Graff, R.1
Rumpker, R.2
Richter, M.3
Verano-Braga, T.4
Kjeldsen, F.5
Brewer, J.6
-
17
-
-
77957766556
-
Nanosilver as a new generation of nanoproduct in biomedical applications
-
Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580-8.
-
(2010)
Trends Biotechnol
, vol.28
, pp. 580-588
-
-
Chaloupka, K.1
Malam, Y.2
Seifalian, A.M.3
-
18
-
-
33746866368
-
Effect of silver nanoparticle dressing on second degree burn wound
-
Chen J, Han CM, Lin XW, Tang ZJ, Su SJ. Effect of silver nanoparticle dressing on second degree burn wound. Zhonghua Wai Ke Za Zhi. 2006;44:50-2.
-
(2006)
Zhonghua Wai Ke Za Zhi
, vol.44
, pp. 50-52
-
-
Chen, J.1
Han, C.M.2
Lin, X.W.3
Tang, Z.J.4
Su, S.J.5
-
19
-
-
34547494151
-
In vitro analysis of a nanocrystalline silver-coated surgical mesh
-
Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, et al. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect (Larchmt). 2007;8:397-403.
-
(2007)
Surg Infect (Larchmt)
, vol.8
, pp. 397-403
-
-
Cohen, M.S.1
Stern, J.M.2
Vanni, A.J.3
Kelley, R.S.4
Baumgart, E.5
Field, D.6
-
20
-
-
29744465476
-
Antimicrobial activities of silver dressings: an in vitro comparison
-
Ip M, Lui SL, Poon VK, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006;55:59-63.
-
(2006)
J Med Microbiol
, vol.55
, pp. 59-63
-
-
Ip, M.1
Lui, S.L.2
Poon, V.K.3
Lung, I.4
Burd, A.5
-
21
-
-
3042777108
-
Controlling wound bioburden with a novel silver-containing Hydrofiber dressing
-
Jones SA, Bowler PG, Walker M, Parsons D. Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen. 2004;12:288-94.
-
(2004)
Wound Repair Regen
, vol.12
, pp. 288-294
-
-
Jones, S.A.1
Bowler, P.G.2
Walker, M.3
Parsons, D.4
-
22
-
-
84874537947
-
A study on the bio-safety for nano-silver as anti-bacterial materials
-
Zhang YY, Sun J. A study on the bio-safety for nano-silver as anti-bacterial materials. Zhongguo Yi Liao Qi Xie Za Zhi. 2007;31:36-8. 16.
-
(2007)
Zhongguo Yi Liao Qi Xie Za Zhi
, vol.31
, pp. 36-38
-
-
Zhang, Y.Y.1
Sun, J.2
-
23
-
-
84931044324
-
Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis
-
Arora S, Tyagi N, Bhardwaj A, Rusu L, Palanki R, Vig K, et al. Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis. Nanomedicine. 2015;11:1265-75.
-
(2015)
Nanomedicine
, vol.11
, pp. 1265-1275
-
-
Arora, S.1
Tyagi, N.2
Bhardwaj, A.3
Rusu, L.4
Palanki, R.5
Vig, K.6
-
24
-
-
84930045139
-
Interleukin-8 is a key mediator of FKBP51-induced melanoma growth, angiogenesis and metastasis
-
Srivastava SK, Bhardwaj A, Arora S, Tyagi N, Singh AP, Carter JE, et al. Interleukin-8 is a key mediator of FKBP51-induced melanoma growth, angiogenesis and metastasis. Br J Cancer. 2015;112:1772-81.
-
(2015)
Br J Cancer
, vol.112
, pp. 1772-1781
-
-
Srivastava, S.K.1
Bhardwaj, A.2
Arora, S.3
Tyagi, N.4
Singh, A.P.5
Carter, J.E.6
-
25
-
-
84908005762
-
p-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT- and ERK-dependent activation of NF-kappaB pathway
-
Tyagi N, Bhardwaj A, Singh AP, McClellan S, Carter JE, Singh S. p-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT- and ERK-dependent activation of NF-kappaB pathway. Oncotarget. 2014;5:8778-89.
-
(2014)
Oncotarget
, vol.5
, pp. 8778-8789
-
-
Tyagi, N.1
Bhardwaj, A.2
Singh, A.P.3
McClellan, S.4
Carter, J.E.5
Singh, S.6
-
26
-
-
84939252612
-
MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways
-
Srivastava SK, Bhardwaj A, Arora S, Tyagi N, Singh S, Andrews J, et al. MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br J Cancer. 2015;113:660-8.
-
(2015)
Br J Cancer
, vol.113
, pp. 660-668
-
-
Srivastava, S.K.1
Bhardwaj, A.2
Arora, S.3
Tyagi, N.4
Singh, S.5
Andrews, J.6
-
27
-
-
84917690858
-
CXCL12/CXCR4 signaling counteracts docetaxel-induced microtubule stabilization via p21-activated kinase 4-dependent activation of LIM domain kinase 1
-
Bhardwaj A, Srivastava SK, Singh S, Arora S, Tyagi N, Andrews J, et al. CXCL12/CXCR4 signaling counteracts docetaxel-induced microtubule stabilization via p21-activated kinase 4-dependent activation of LIM domain kinase 1. Oncotarget. 2014;5:11490-500.
-
(2014)
Oncotarget
, vol.5
, pp. 11490-11500
-
-
Bhardwaj, A.1
Srivastava, S.K.2
Singh, S.3
Arora, S.4
Tyagi, N.5
Andrews, J.6
-
28
-
-
84929629273
-
Resistin and interleukin-6 exhibit racially-disparate expression in breast cancer patients, display molecular association and promote growth and aggressiveness of tumor cells through STAT3 activation
-
Deshmukh SK, Srivastava SK, Bhardwaj A, Singh AP, Tyagi N, Marimuthu S, et al. Resistin and interleukin-6 exhibit racially-disparate expression in breast cancer patients, display molecular association and promote growth and aggressiveness of tumor cells through STAT3 activation. Oncotarget. 2015;6:11231-41.
-
(2015)
Oncotarget
, vol.6
, pp. 11231-11241
-
-
Deshmukh, S.K.1
Srivastava, S.K.2
Bhardwaj, A.3
Singh, A.P.4
Tyagi, N.5
Marimuthu, S.6
-
29
-
-
84860322847
-
A systematic review of worldwide incidence of nonmelanoma skin cancer
-
Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166:1069-80.
-
(2012)
Br J Dermatol
, vol.166
, pp. 1069-1080
-
-
Lomas, A.1
Leonardi-Bee, J.2
Bath-Hextall, F.3
-
30
-
-
55949113520
-
Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species
-
Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112:13608-19.
-
(2008)
J Phys Chem B
, vol.112
, pp. 13608-13619
-
-
Carlson, C.1
Hussain, S.M.2
Schrand, A.M.3
Braydich-Stolle, L.K.4
Hess, K.L.5
Jones, R.L.6
-
31
-
-
84888005217
-
Therapeutic potentials of silver nanoparticle complex of á-lipoic acid
-
Ramachandran L, Nair CKK. Therapeutic potentials of silver nanoparticle complex of á-lipoic acid. Nanomater Nanotechnol. 2011;1:17-24.
-
(2011)
Nanomater Nanotechnol
, vol.1
, pp. 17-24
-
-
Ramachandran, L.1
Nair, C.K.K.2
-
32
-
-
79957813429
-
Cellular radioprotecting potential of glyzyrrhizic acid, silver nanoparticle and their complex
-
Chandrasekharan DK, Khanna PK, Nair CK. Cellular radioprotecting potential of glyzyrrhizic acid, silver nanoparticle and their complex. Mutat Res. 2011;723:51-7.
-
(2011)
Mutat Res
, vol.723
, pp. 51-57
-
-
Chandrasekharan, D.K.1
Khanna, P.K.2
Nair, C.K.3
-
33
-
-
77649212361
-
Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro
-
Samberg ME, Oldenburg SJ, Monteiro-Riviere NA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect. 2010;118:407-13.
-
(2010)
Environ Health Perspect
, vol.118
, pp. 407-413
-
-
Samberg, M.E.1
Oldenburg, S.J.2
Monteiro-Riviere, N.A.3
-
34
-
-
9244251125
-
Cell-cycle checkpoints and cancer
-
Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432:316-23.
-
(2004)
Nature
, vol.432
, pp. 316-323
-
-
Kastan, M.B.1
Bartek, J.2
-
35
-
-
69249230769
-
Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms
-
Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene. 2009;28:2925-39.
-
(2009)
Oncogene
, vol.28
, pp. 2925-2939
-
-
Satyanarayana, A.1
Kaldis, P.2
-
36
-
-
33644974099
-
Enhancement of UVB radiation-mediated apoptosis by sanguinarine in HaCaT human immortalized keratinocytes
-
Reagan-Shaw S, Breur J, Ahmad N. Enhancement of UVB radiation-mediated apoptosis by sanguinarine in HaCaT human immortalized keratinocytes. Mol Cancer Ther. 2006;5:418-29.
-
(2006)
Mol Cancer Ther
, vol.5
, pp. 418-429
-
-
Reagan-Shaw, S.1
Breur, J.2
Ahmad, N.3
-
37
-
-
84893175988
-
Engineered nanoparticles interacting with cells: size matters
-
Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnology. 2014;12:5.
-
(2014)
J Nanobiotechnology
, vol.12
, pp. 5
-
-
Shang, L.1
Nienhaus, K.2
Nienhaus, G.U.3
-
38
-
-
84864670257
-
Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo
-
Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012;6:4483-93.
-
(2012)
ACS Nano
, vol.6
, pp. 4483-4493
-
-
Huang, K.1
Ma, H.2
Liu, J.3
Huo, S.4
Kumar, A.5
Wei, T.6
-
39
-
-
80051532158
-
Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model
-
Bouwmeester H, Poortman J, Peters RJ, Wijma E, Kramer E, Makama S, et al. Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano. 2011;5:4091-103.
-
(2011)
ACS Nano
, vol.5
, pp. 4091-4103
-
-
Bouwmeester, H.1
Poortman, J.2
Peters, R.J.3
Wijma, E.4
Kramer, E.5
Makama, S.6
|