-
1
-
-
44449144047
-
Nanoparticle silver released into water from commercially available sock fabrics
-
Benn T.M., Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42:4133-4139.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 4133-4139
-
-
Benn, T.M.1
Westerhoff, P.2
-
2
-
-
63649113800
-
Visual sandwich immunoassay system on the basis of plasmon resonance scattering signals of silver nanoparticles
-
Ling J., et al. Visual sandwich immunoassay system on the basis of plasmon resonance scattering signals of silver nanoparticles. Anal. Chem. 2009, 81:1707-1714.
-
(2009)
Anal. Chem.
, vol.81
, pp. 1707-1714
-
-
Ling, J.1
-
3
-
-
46049121157
-
Applications and implications of nanotechnologies for the food sector
-
Chaudhry Q., et al. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. A 2008, 25:241-258.
-
(2008)
Food Addit. Contam. A
, vol.25
, pp. 241-258
-
-
Chaudhry, Q.1
-
4
-
-
49649122769
-
Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model
-
Nadworny P.L., et al. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine 2008, 4:241-251.
-
(2008)
Nanomedicine
, vol.4
, pp. 241-251
-
-
Nadworny, P.L.1
-
5
-
-
38449094052
-
Bacteriology, inflammation, and healing: a study of nanocrystalline silver dressings in chronic venous leg ulcers
-
Sibbald R.G., et al. Bacteriology, inflammation, and healing: a study of nanocrystalline silver dressings in chronic venous leg ulcers. Adv. Skin Wound. Care 2007, 20:549-558.
-
(2007)
Adv. Skin Wound. Care
, vol.20
, pp. 549-558
-
-
Sibbald, R.G.1
-
6
-
-
34247598245
-
Topical delivery of silver nanoparticles promotes wound healing
-
Tian J., et al. Topical delivery of silver nanoparticles promotes wound healing. Chem. Med. Chem. 2007, 2:129-136.
-
(2007)
Chem. Med. Chem.
, vol.2
, pp. 129-136
-
-
Tian, J.1
-
7
-
-
0036310367
-
Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing
-
Wright J.B., et al. Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen. 2002, 10:141-151.
-
(2002)
Wound Repair Regen.
, vol.10
, pp. 141-151
-
-
Wright, J.B.1
-
8
-
-
33846785144
-
A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis
-
Huang Y., et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns 2007, 33:161-166.
-
(2007)
Burns
, vol.33
, pp. 161-166
-
-
Huang, Y.1
-
9
-
-
33846660674
-
Effect of silver on burn wound infection control and healing: review of the literature
-
Atiyeh B.S., et al. Effect of silver on burn wound infection control and healing: review of the literature. Burns 2007, 33:139-148.
-
(2007)
Burns
, vol.33
, pp. 139-148
-
-
Atiyeh, B.S.1
-
10
-
-
65049087833
-
Surface-enhanced Raman scattering from a single molecularly bridged silver nanoparticle aggregate
-
Sladkova M., et al. Surface-enhanced Raman scattering from a single molecularly bridged silver nanoparticle aggregate. J. Mol. Struct. 2009, 924-926:567-570.
-
(2009)
J. Mol. Struct.
, pp. 567-570
-
-
Sladkova, M.1
-
11
-
-
44749089357
-
The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth
-
Choi O., et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008, 42:3066-3074.
-
(2008)
Water Res.
, vol.42
, pp. 3066-3074
-
-
Choi, O.1
-
12
-
-
69449084368
-
PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes
-
Foldbjerg R., et al. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 2009, 190:156-162.
-
(2009)
Toxicol. Lett.
, vol.190
, pp. 156-162
-
-
Foldbjerg, R.1
-
13
-
-
0141744866
-
Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process
-
Sun Y.G., et al. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett. 2003, 3:675-679.
-
(2003)
Nano Lett.
, vol.3
, pp. 675-679
-
-
Sun, Y.G.1
-
14
-
-
33748537717
-
Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity
-
Panacek A., et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 2006, 110:16248-16253.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 16248-16253
-
-
Panacek, A.1
-
15
-
-
65249127972
-
Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy
-
Sato-Berru R., et al. Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 2009, 40:376-380.
-
(2009)
J. Raman Spectrosc.
, vol.40
, pp. 376-380
-
-
Sato-Berru, R.1
-
16
-
-
34547471506
-
A simple method to synthesize silver nanoparticles by photo-reduction
-
Courrol L.C., et al. A simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf. A 2007, 305:54-57.
-
(2007)
Colloids Surf. A
, vol.305
, pp. 54-57
-
-
Courrol, L.C.1
-
17
-
-
56949104680
-
Silver nanoparticles: green synthesis and their antimicrobial activities
-
Sharma V.K., et al. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 145:83-96.
-
(2009)
Adv. Colloid Interface Sci.
, vol.145
, pp. 83-96
-
-
Sharma, V.K.1
-
18
-
-
34047179643
-
Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach
-
Shahverdi A.R., et al. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem. 2007, 42:919-923.
-
(2007)
Process Biochem.
, vol.42
, pp. 919-923
-
-
Shahverdi, A.R.1
-
19
-
-
67349118878
-
Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain
-
Shaligram N.S., et al. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 2009, 44:939-943.
-
(2009)
Process Biochem.
, vol.44
, pp. 939-943
-
-
Shaligram, N.S.1
-
20
-
-
0242351939
-
Silver nanoparticle enhanced immunoassays: one step real time kinetic assay for insulin in serum
-
Lochner N., et al. Silver nanoparticle enhanced immunoassays: one step real time kinetic assay for insulin in serum. Eur. J. Pharm. Biopharm. 2003, 56:469-477.
-
(2003)
Eur. J. Pharm. Biopharm.
, vol.56
, pp. 469-477
-
-
Lochner, N.1
-
21
-
-
43549092247
-
The antibacterial properties of a novel chitosan-Ag-nanoparticle composite
-
Sanpui P., et al. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int. J. Food Microbiol. 2008, 124:142-146.
-
(2008)
Int. J. Food Microbiol.
, vol.124
, pp. 142-146
-
-
Sanpui, P.1
-
22
-
-
25444497481
-
The bactericidal effect of silver nanoparticles
-
Morones J.R., et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16:2346-2353.
-
(2005)
Nanotechnology
, vol.16
, pp. 2346-2353
-
-
Morones, J.R.1
-
23
-
-
34248186146
-
Characterization of enhanced antibacterial effects of novel silver nanoparticles
-
Shrivastava S. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18:225103-225112.
-
(2007)
Nanotechnology
, vol.18
, pp. 225103-225112
-
-
Shrivastava, S.1
-
24
-
-
65249087346
-
Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA
-
Yang W.J., et al. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 2009, 20:085102.
-
(2009)
Nanotechnology
, vol.20
, pp. 085102
-
-
Yang, W.J.1
-
25
-
-
34247595454
-
Silver nanoparticles: partial oxidation and antibacterial activities
-
Lok C.N., et al. Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007, 12:527-534.
-
(2007)
J. Biol. Inorg. Chem.
, vol.12
, pp. 527-534
-
-
Lok, C.N.1
-
26
-
-
60549088501
-
Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity
-
Park H.J., et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009, 43:1027-1032.
-
(2009)
Water Res.
, vol.43
, pp. 1027-1032
-
-
Park, H.J.1
-
27
-
-
55949113520
-
Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species
-
Carlson C., et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 2008, 112:13608-13619.
-
(2008)
J. Phys. Chem. B
, vol.112
, pp. 13608-13619
-
-
Carlson, C.1
-
28
-
-
84944450592
-
Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli
-
Pal S., et al. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73:1712-1720.
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, pp. 1712-1720
-
-
Pal, S.1
-
29
-
-
0037903225
-
Bacterial silver resistance: molecular biology and uses and misuses of silver compounds
-
Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 2003, 27:341-353.
-
(2003)
FEMS Microbiol. Rev.
, vol.27
, pp. 341-353
-
-
Silver, S.1
-
30
-
-
32044447430
-
Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis
-
Yamanaka M., et al. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 2005, 71:7589-7593.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 7589-7593
-
-
Yamanaka, M.1
-
31
-
-
42049088267
-
Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli
-
Jung W.K., et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 2008, 74:2171-2178.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 2171-2178
-
-
Jung, W.K.1
-
32
-
-
2442686414
-
Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria
-
Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275:177-182.
-
(2004)
J. Colloid Interface Sci.
, vol.275
, pp. 177-182
-
-
Sondi, I.1
Salopek-Sondi, B.2
-
33
-
-
33645764133
-
Proteomic analysis of the mode of antibacterial action of silver nanoparticles
-
Lok C.N., et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 2006, 5:916-924.
-
(2006)
J. Proteome Res.
, vol.5
, pp. 916-924
-
-
Lok, C.N.1
-
34
-
-
3142653072
-
Novel approaches to clinical trials: device-related infections
-
Califf R.M., et al. Novel approaches to clinical trials: device-related infections. Am. Heart J. 2004, 147:599-604.
-
(2004)
Am. Heart J.
, vol.147
, pp. 599-604
-
-
Califf, R.M.1
-
35
-
-
67349183998
-
The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood
-
Stevens K.N.J., et al. The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials 2009, 30:3682-3690.
-
(2009)
Biomaterials
, vol.30
, pp. 3682-3690
-
-
Stevens, K.N.J.1
-
36
-
-
33747362048
-
Prosthetic heart valves: objective performance criteria versus randomized clinical trial
-
Grunkemeier G.L., et al. Prosthetic heart valves: objective performance criteria versus randomized clinical trial. Ann. Thorac. Surg. 2006, 82:776-780.
-
(2006)
Ann. Thorac. Surg.
, vol.82
, pp. 776-780
-
-
Grunkemeier, G.L.1
-
37
-
-
64649105376
-
Seven-year results with the St Jude Medical Silzone mechanical prosthesis
-
Jamieson W.R.E., et al. Seven-year results with the St Jude Medical Silzone mechanical prosthesis. J. Thorac. Cardiovasc. Surg. 2009, 137:1109-1115.
-
(2009)
J. Thorac. Cardiovasc. Surg.
, vol.137
, pp. 1109-1115
-
-
Jamieson, W.R.E.1
-
38
-
-
33751163493
-
Hemocompatibility of diamondlike carbon-metal composite thin films
-
Andara M., et al. Hemocompatibility of diamondlike carbon-metal composite thin films. Diamond Relat. Mater. 2006, 15:1941-1948.
-
(2006)
Diamond Relat. Mater.
, vol.15
, pp. 1941-1948
-
-
Andara, M.1
-
39
-
-
65549103981
-
Polymeric heart valves: new materials, emerging hopes
-
Ghanbari H., et al. Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol. 2009, 27:359-367.
-
(2009)
Trends Biotechnol.
, vol.27
, pp. 359-367
-
-
Ghanbari, H.1
-
40
-
-
1642310426
-
Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter
-
Samuel U., Guggenbichler J.P. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int. J. Antimicrob. Agents 2004, 23:75-78.
-
(2004)
Int. J. Antimicrob. Agents
, vol.23
, pp. 75-78
-
-
Samuel, U.1
Guggenbichler, J.P.2
-
41
-
-
41149149262
-
Antimicrobial surface functionalization of plastic catheters by silver nanoparticles
-
Roe D., et al. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 2008, 61:869-876.
-
(2008)
J. Antimicrob. Chemother.
, vol.61
, pp. 869-876
-
-
Roe, D.1
-
42
-
-
34249342254
-
Prevention of infection in neurosurgery: role of " antimicrobial" catheters
-
Bayston R., et al. Prevention of infection in neurosurgery: role of " antimicrobial" catheters. J. Hosp. Infect. 2007, 65:39-42.
-
(2007)
J. Hosp. Infect.
, vol.65
, pp. 39-42
-
-
Bayston, R.1
-
43
-
-
33746762171
-
Hospital-acquired infection surveillance in a neurosurgical intensive care unit
-
Orsi G.B., et al. Hospital-acquired infection surveillance in a neurosurgical intensive care unit. J. Hosp. Infect. 2006, 64:23-29.
-
(2006)
J. Hosp. Infect.
, vol.64
, pp. 23-29
-
-
Orsi, G.B.1
-
44
-
-
44449084836
-
Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages
-
Galiano K., et al. Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages. Neurol. Res. 2008, 30:285-287.
-
(2008)
Neurol. Res.
, vol.30
, pp. 285-287
-
-
Galiano, K.1
-
45
-
-
51449102583
-
Efficacy of silver nanoparticles-impregnated external ventricular drain catheters in patients with acute occlusive hydrocephalus
-
Lackner P., et al. Efficacy of silver nanoparticles-impregnated external ventricular drain catheters in patients with acute occlusive hydrocephalus. Neurocrit. Care 2008, 8:360-365.
-
(2008)
Neurocrit. Care
, vol.8
, pp. 360-365
-
-
Lackner, P.1
-
46
-
-
1642272096
-
An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement
-
Alt V., et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004, 25:4383-4391.
-
(2004)
Biomaterials
, vol.25
, pp. 4383-4391
-
-
Alt, V.1
-
47
-
-
33750823074
-
Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement
-
Jiranek W.A., et al. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J. Bone Jt. Surg. Am. 2006, 88:2487-2500.
-
(2006)
J. Bone Jt. Surg. Am.
, vol.88
, pp. 2487-2500
-
-
Jiranek, W.A.1
-
48
-
-
33746866368
-
[Effect of silver nanoparticle dressing on second degree burn wound]
-
Chen J., et al. [Effect of silver nanoparticle dressing on second degree burn wound]. Zhonghua Wai Ke. Za Zhi. 2006, 44:50-52.
-
(2006)
Zhonghua Wai Ke. Za Zhi.
, vol.44
, pp. 50-52
-
-
Chen, J.1
-
49
-
-
35748933510
-
The safety of nanocrystalline silver dressings on burns: a study of systemic silver absorption
-
Vlachou E., et al. The safety of nanocrystalline silver dressings on burns: a study of systemic silver absorption. Burns 2007, 33:979-985.
-
(2007)
Burns
, vol.33
, pp. 979-985
-
-
Vlachou, E.1
-
50
-
-
33845195689
-
Treatment of toxic epidermal necrolysis in a pediatric patient with a nanocrystalline silver dressing
-
Asz J., et al. Treatment of toxic epidermal necrolysis in a pediatric patient with a nanocrystalline silver dressing. J. Pediatr. Surg. 2006, 41:e9-e12.
-
(2006)
J. Pediatr. Surg.
, vol.41
-
-
Asz, J.1
-
51
-
-
34547830913
-
®)
-
®). Burns 2007, 33:793-797.
-
(2007)
Burns
, vol.33
, pp. 793-797
-
-
Yang, J.Y.1
-
52
-
-
44649203035
-
Construction, application and biosafety of silver nanocrystalline chitosan wound dressing
-
Lu S., et al. Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns 2008, 34:623-628.
-
(2008)
Burns
, vol.34
, pp. 623-628
-
-
Lu, S.1
-
53
-
-
68249146101
-
Nanocrystalline silver: a systematic review of randomized trials conducted on burned patients and an evidence-based assessment of potential advantages over older silver formulations
-
Gravante G., et al. Nanocrystalline silver: a systematic review of randomized trials conducted on burned patients and an evidence-based assessment of potential advantages over older silver formulations. Ann. Plast. Surg. 2009, 63:201-205.
-
(2009)
Ann. Plast. Surg.
, vol.63
, pp. 201-205
-
-
Gravante, G.1
-
54
-
-
56549094531
-
Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by Toll-like receptor ligands
-
Castillo P.M., et al. Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by Toll-like receptor ligands. Nanomedicine 2008, 3:627-635.
-
(2008)
Nanomedicine
, vol.3
, pp. 627-635
-
-
Castillo, P.M.1
-
55
-
-
40849106160
-
Intravesical nanocrystalline silver decreases experimental bladder inflammation
-
Boucher W., et al. Intravesical nanocrystalline silver decreases experimental bladder inflammation. J. Urol. 2008, 179:1598-1602.
-
(2008)
J. Urol.
, vol.179
, pp. 1598-1602
-
-
Boucher, W.1
-
56
-
-
37049000154
-
Nanosilver: a nanoproduct in medical application
-
Chen X., Schluesener H.J. Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 2008, 176:1-12.
-
(2008)
Toxicol. Lett.
, vol.176
, pp. 1-12
-
-
Chen, X.1
Schluesener, H.J.2
-
57
-
-
67650485670
-
The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution
-
Impellitteri C.A., et al. The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution. J. Environ. Qual. 2009, 38:1528-1530.
-
(2009)
J. Environ. Qual.
, vol.38
, pp. 1528-1530
-
-
Impellitteri, C.A.1
-
58
-
-
28244460297
-
Cleaner nanotechnology and hazard reduction of manufactured nanoparticles
-
Reijnders L. Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J. Cleaner Prod. 2006, 14:124-133.
-
(2006)
J. Cleaner Prod.
, vol.14
, pp. 124-133
-
-
Reijnders, L.1
-
59
-
-
45849153496
-
The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells
-
Hsin Y.H., et al. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 2008, 179:130-139.
-
(2008)
Toxicol. Lett.
, vol.179
, pp. 130-139
-
-
Hsin, Y.H.1
-
60
-
-
26644473212
-
Exposure-related health effects of silver and silver compounds: a review
-
Drake P.L., Hazelwood K.J. Exposure-related health effects of silver and silver compounds: a review. Ann. Occup. Hyg. 2005, 49:575-585.
-
(2005)
Ann. Occup. Hyg.
, vol.49
, pp. 575-585
-
-
Drake, P.L.1
Hazelwood, K.J.2
-
61
-
-
27644541020
-
In vitro toxicity of nanoparticles in BRL 3A rat liver cells
-
Hussain S.M., et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 2005, 19:975-983.
-
(2005)
Toxicol. In Vitro
, vol.19
, pp. 975-983
-
-
Hussain, S.M.1
-
62
-
-
27944489615
-
In vitro cytotoxicity of nanoparticles in mammalian germline stem cells
-
Braydich-Stolle L., et al. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005, 88:412-419.
-
(2005)
Toxicol. Sci.
, vol.88
, pp. 412-419
-
-
Braydich-Stolle, L.1
-
63
-
-
42649143562
-
Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats
-
Kim Y.S., et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 2008, 20:575-583.
-
(2008)
Inhal. Toxicol.
, vol.20
, pp. 575-583
-
-
Kim, Y.S.1
-
64
-
-
42549154982
-
In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos
-
Lee K.J., et al. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 2007, 1:133-143.
-
(2007)
ACS Nano
, vol.1
, pp. 133-143
-
-
Lee, K.J.1
-
65
-
-
63449105617
-
Cytotoxicity and genotoxicity of silver nanoparticles in human cells
-
Asharani P.V., et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3:279-290.
-
(2009)
ACS Nano
, vol.3
, pp. 279-290
-
-
Asharani, P.V.1
-
66
-
-
77649212361
-
Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro
-
Samberg M.E., et al. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health Perspect. 2010, 118:407-413.
-
(2010)
Environ. Health Perspect.
, vol.118
, pp. 407-413
-
-
Samberg, M.E.1
-
67
-
-
67349284062
-
A prospective double-blinded comparative analysis of framycetin and silver sulphadiazine as topical agents for burns: a pilot study
-
Ahuja R.B., et al. A prospective double-blinded comparative analysis of framycetin and silver sulphadiazine as topical agents for burns: a pilot study. Burns 2009, 35:672-676.
-
(2009)
Burns
, vol.35
, pp. 672-676
-
-
Ahuja, R.B.1
-
68
-
-
70350051319
-
Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use
-
Jain J., et al. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol. Pharm. 2009, 6:1388-1401.
-
(2009)
Mol. Pharm.
, vol.6
, pp. 1388-1401
-
-
Jain, J.1
-
69
-
-
39749151555
-
Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil
-
Kumar A., et al. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 2008, 7:236-241.
-
(2008)
Nat. Mater.
, vol.7
, pp. 236-241
-
-
Kumar, A.1
-
70
-
-
33745698326
-
A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch
-
Vigneshwaran N., et al. A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch. Carbohydr. Res. 2006, 341:2012-2018.
-
(2006)
Carbohydr. Res.
, vol.341
, pp. 2012-2018
-
-
Vigneshwaran, N.1
-
71
-
-
34247507669
-
Synthesis of silver nanoparticles by γ-ray irradiation in acetic water solution containing chitosan
-
Chen P., et al. Synthesis of silver nanoparticles by γ-ray irradiation in acetic water solution containing chitosan. Radiat. Phys. Chem. 2007, 76:1165-1168.
-
(2007)
Radiat. Phys. Chem.
, vol.76
, pp. 1165-1168
-
-
Chen, P.1
-
72
-
-
43449139110
-
Preparation and characterization of stable monodisperse silver nanoparticles via photoreduction
-
Xu G.-N., et al. Preparation and characterization of stable monodisperse silver nanoparticles via photoreduction. Colloids Surf. A 2008, 320:222-226.
-
(2008)
Colloids Surf. A
, vol.320
, pp. 222-226
-
-
Xu, G.-N.1
-
73
-
-
53049107541
-
Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus
-
Tien D.C., et al. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus. Med. Eng. Phys. 2008, 30:948-952.
-
(2008)
Med. Eng. Phys.
, vol.30
, pp. 948-952
-
-
Tien, D.C.1
-
74
-
-
68149174933
-
Superior bactericidal activity of SDS capped silver nanoparticles: synthesis and characterization
-
Kora A.J., et al. Superior bactericidal activity of SDS capped silver nanoparticles: synthesis and characterization. Mater. Sci. Eng. C 2009, 29:2104-2109.
-
(2009)
Mater. Sci. Eng. C
, vol.29
, pp. 2104-2109
-
-
Kora, A.J.1
-
75
-
-
66249143049
-
Peptide-coated silver nanoparticles: synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies
-
Graf P., et al. Peptide-coated silver nanoparticles: synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies. Chemistry 2009, 15:5831-5844.
-
(2009)
Chemistry
, vol.15
, pp. 5831-5844
-
-
Graf, P.1
-
76
-
-
44949088482
-
Toxicity of silver nanoparticles in zebrafish models
-
Asharani P.V., et al. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 2008, 19:255102.
-
(2008)
Nanotechnology
, vol.19
, pp. 255102
-
-
Asharani, P.V.1
-
77
-
-
41549148118
-
Strain specificity in antimicrobial activity of silver and copper nanoparticles
-
Ruparelia J.P., et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4:707-716.
-
(2008)
Acta Biomater.
, vol.4
, pp. 707-716
-
-
Ruparelia, J.P.1
-
78
-
-
26844527724
-
Interaction of silver nanoparticles with HIV-1
-
Elechiguerra J.L., et al. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 2005, 3:6.
-
(2005)
J. Nanobiotechnol.
, vol.3
, pp. 6
-
-
Elechiguerra, J.L.1
-
79
-
-
76749144670
-
Mode of antiviral action of silver nanoparticles against HIV-1
-
Lara H.H., et al. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol. 2010, 8:1.
-
(2010)
J. Nanobiotechnol.
, vol.8
, pp. 1
-
-
Lara, H.H.1
|