메뉴 건너뛰기




Volumn 74, Issue 6, 2015, Pages 5039-5048

A threshold artificial neural network model for improving runoff prediction in a karst watershed

Author keywords

Artificial neural network; Karst watershed; Simulation; Threshold

Indexed keywords

AQUIFERS; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; COMPLEX NETWORKS; FLOODS; FORECASTING; NEURAL NETWORKS; RAIN; RUNOFF; STREAM FLOW; WATERSHEDS;

EID: 84940723980     PISSN: 18666280     EISSN: 18666299     Source Type: Journal    
DOI: 10.1007/s12665-015-4562-9     Document Type: Article
Times cited : (28)

References (48)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart JR, See L (2000) Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol Process 14:2157–2172
    • (2000) Hydrol Process , vol.14 , pp. 2157-2172
    • Abrahart, J.R.1    See, L.2
  • 2
    • 0000782355 scopus 로고
    • Automated base flow separation and recession analysis techniques
    • Arnold JG, Allen PM, Muttiah R, Bernhardt G (1995) Automated base flow separation and recession analysis techniques. Gr Water 33:1010–1018
    • (1995) Gr Water , vol.33 , pp. 1010-1018
    • Arnold, J.G.1    Allen, P.M.2    Muttiah, R.3    Bernhardt, G.4
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Task committee on application of artificial neural networks in hydrology, artificial neural networks in hydrology part I: preliminary concepts
    • ASCE (2000a) Task committee on application of artificial neural networks in hydrology, artificial neural networks in hydrology part I: preliminary concepts. J Hydrol Eng 5:115–123
    • (2000) J Hydrol Eng , vol.5 , pp. 115-123
  • 4
    • 0034174396 scopus 로고    scopus 로고
    • Task committee on application of artificial neural networks in hydrology, artificial neural networks in hydrology part II: hydrologic applications
    • ASCE (2000b) Task committee on application of artificial neural networks in hydrology, artificial neural networks in hydrology part II: hydrologic applications. J Hydrol Eng 5:124–137
    • (2000) J Hydrol Eng , vol.5 , pp. 124-137
  • 5
    • 0031239481 scopus 로고    scopus 로고
    • A parsimonious model for simulating flow in a karst aquifer
    • Barrett ME, Charbeneau RJ (1997) A parsimonious model for simulating flow in a karst aquifer. J Hydrol 196:47–65
    • (1997) J Hydrol , vol.196 , pp. 47-65
    • Barrett, M.E.1    Charbeneau, R.J.2
  • 6
    • 0347668981 scopus 로고    scopus 로고
    • Analysis of the maximum discharge of karst springs
    • Bonacci O (2001) Analysis of the maximum discharge of karst springs. Hydrogeol J 9:328–338
    • (2001) Hydrogeol J , vol.9 , pp. 328-338
    • Bonacci, O.1
  • 8
    • 0036680413 scopus 로고    scopus 로고
    • Simulating time-varying cave flow and water levels using the storm water management model
    • Campbell CW, Sullivan SM (2002) Simulating time-varying cave flow and water levels using the storm water management model. Eng Geol 65:133–139
    • (2002) Eng Geol , vol.65 , pp. 133-139
    • Campbell, C.W.1    Sullivan, S.M.2
  • 9
    • 84867963090 scopus 로고    scopus 로고
    • Design of deep belief networks for short-term prediction of drought index using data in the Huaihe river basin
    • Chen JF, Jin QJ, Chao J (2012) Design of deep belief networks for short-term prediction of drought index using data in the Huaihe river basin. Math Probl Eng 2012:1–16
    • (2012) Math Probl Eng , vol.2012 , pp. 1-16
    • Chen, J.F.1    Jin, Q.J.2    Chao, J.3
  • 10
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
    • Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Adv Water Resour 27:185–195
    • (2004) Adv Water Resour , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 11
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three backpropagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu HK, Kisi O (2005) Flow prediction by three backpropagation techniques using k-fold partitioning of neural network training data. Nord Hydrol 36:1–16
    • (2005) Nord Hydrol , vol.36 , pp. 1-16
    • Cigizoglu, H.K.1    Kisi, O.2
  • 12
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2:303–314
    • (1989) Math Control Signals Syst , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 13
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • Dawson CW, Wilby RL (2001) Hydrological modeling using artificial neural networks. Prog Phys Geogr 25:80–108
    • (2001) Prog Phys Geogr , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 14
    • 0020332318 scopus 로고
    • Linear kernels for karst aquifers
    • Dreiss SJ (1982) Linear kernels for karst aquifers. Water Resour Res 18:865–876
    • (1982) Water Resour Res , vol.18 , pp. 865-876
    • Dreiss, S.J.1
  • 15
    • 0018976763 scopus 로고
    • Linear unit-response functions as indicators of recharge areas for large karst springs
    • Dreiss SJ (1983) Linear unit-response functions as indicators of recharge areas for large karst springs. J Hydrol 61:31–44
    • (1983) J Hydrol , vol.61 , pp. 31-44
    • Dreiss, S.J.1
  • 16
    • 0342617831 scopus 로고    scopus 로고
    • Numerical simulation as a tool for checking the interpretation of karst spring hydrographs
    • Eisenlohr L, Kiral L, Bouzelboudjen M, Rossier Y (1997) Numerical simulation as a tool for checking the interpretation of karst spring hydrographs. J Hydrol 193:306–315
    • (1997) J Hydrol , vol.193 , pp. 306-315
    • Eisenlohr, L.1    Kiral, L.2    Bouzelboudjen, M.3    Rossier, Y.4
  • 18
    • 38049082249 scopus 로고    scopus 로고
    • Electronics Industry Press, Beijing
    • Feisi Research and Development Center of Science and Technology (2003) MATAB 6.5 auxiliary neural network analysis and design. Electronics Industry Press, Beijing
    • (2003) MATAB 6.5 auxiliary neural network analysis and design
  • 19
    • 0028669387 scopus 로고
    • Peak flow rate and recession-curve characteristics of a karst spring in the inner bluegrass, central Kentucky
    • Felton GK, Currens JC (1994) Peak flow rate and recession-curve characteristics of a karst spring in the inner bluegrass, central Kentucky. J Hydrol 162:119–141
    • (1994) J Hydrol , vol.162 , pp. 119-141
    • Felton, G.K.1    Currens, J.C.2
  • 20
    • 0031998129 scopus 로고    scopus 로고
    • Application example of neural networks for time series analysis: rainfall runoff modeling
    • Furundzic D (1998) Application example of neural networks for time series analysis: rainfall runoff modeling. Sig Process 64:383–396
    • (1998) Sig Process , vol.64 , pp. 383-396
    • Furundzic, D.1
  • 22
    • 0032504079 scopus 로고    scopus 로고
    • Modeling of storm responses in conduit flow aquifers with reservoirs
    • Halihan T, Wicks CM (1998) Modeling of storm responses in conduit flow aquifers with reservoirs. J Hydrol 208:82–91
    • (1998) J Hydrol , vol.208 , pp. 82-91
    • Halihan, T.1    Wicks, C.M.2
  • 23
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feed forward networks are universal approximators. Neural Netw 2:359–366
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 24
    • 34347225976 scopus 로고    scopus 로고
    • Advancement in research of physically based watershed hydrological model
    • (in Chinese)
    • Hu HP, Tian FQ (2007) Advancement in research of physically based watershed hydrological model. J Hydraul Eng 38:511–517 (in Chinese)
    • (2007) J Hydraul Eng , vol.38 , pp. 511-517
    • Hu, H.P.1    Tian, F.Q.2
  • 25
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • Hu TS, Lam KC, Ng ST (2001) River flow time series prediction with a range-dependent neural network. Hydrol Sci J 46:729–745
    • (2001) Hydrol Sci J , vol.46 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 26
    • 17444385970 scopus 로고    scopus 로고
    • A modified neural network for improving river flow prediction
    • Hu TS, Lam KC, Ng ST (2005) A modified neural network for improving river flow prediction. Hydrol Sci J 50(2):299–318
    • (2005) Hydrol Sci J , vol.50 , Issue.2 , pp. 299-318
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 27
    • 40049099428 scopus 로고    scopus 로고
    • Simulation of spring flows from a karst aquifer with an artificial neural network
    • Hu CH, Hao YH, Yeh TC, Pang B, Wu ZN (2008) Simulation of spring flows from a karst aquifer with an artificial neural network. Hydrol Process 22:596–604
    • (2008) Hydrol Process , vol.22 , pp. 596-604
    • Hu, C.H.1    Hao, Y.H.2    Yeh, T.C.3    Pang, B.4    Wu, Z.N.5
  • 28
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall runoff models using integration of deterministic, real-coded GA, and ANN techniques
    • Jain A, Srinivasulu S (2004) Development of effective and efficient rainfall runoff models using integration of deterministic, real-coded GA, and ANN techniques. Water Resour Res 40:W043021–W0430212
    • (2004) Water Resour Res , vol.40 , pp. 43021-430212
    • Jain, A.1    Srinivasulu, S.2
  • 29
    • 80053194099 scopus 로고    scopus 로고
    • BP neural network of continuous casting technological parameters and secondary dendrite arm spacing of spring steel
    • Jiang LH, Wang AG, Tian NY, Zhang WC, Fan QL (2011) BP neural network of continuous casting technological parameters and secondary dendrite arm spacing of spring steel. J Iron Steel Res Int 18:25–29
    • (2011) J Iron Steel Res Int , vol.18 , pp. 25-29
    • Jiang, L.H.1    Wang, A.G.2    Tian, N.Y.3    Zhang, W.C.4    Fan, Q.L.5
  • 30
    • 72449178709 scopus 로고    scopus 로고
    • Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model
    • Ju Q, Yu ZB, Hao ZC, Ou GX, Zhao J, Liu DD (2009) Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model. Neurocomputing 72:2873–2883
    • (2009) Neurocomputing , vol.72 , pp. 2873-2883
    • Ju, Q.1    Yu, Z.B.2    Hao, Z.C.3    Ou, G.X.4    Zhao, J.5    Liu, D.D.6
  • 31
    • 33746928790 scopus 로고    scopus 로고
    • Nonlinear kernel functions for karst aquifers
    • Jukic D, Denic-Jukic V (2006) Nonlinear kernel functions for karst aquifers. J Hydrol 328:360–374
    • (2006) J Hydrol , vol.328 , pp. 360-374
    • Jukic, D.1    Denic-Jukic, V.2
  • 32
    • 0034610440 scopus 로고    scopus 로고
    • Rainfall-runoff relations for karstic springs, part I: convolution and spectral analyses
    • Labat D, Ababou R, Mangin A (2000a) Rainfall-runoff relations for karstic springs, part I: convolution and spectral analyses. J Hydrol 238:123–148
    • (2000) J Hydrol , vol.238 , pp. 123-148
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 33
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relations for karstic springs, part II: continuous wavelet and discrete orthogonal multiresolution analyses
    • Labat D, Ababou R, Mangin A (2000b) Rainfall-runoff relations for karstic springs, part II: continuous wavelet and discrete orthogonal multiresolution analyses. J Hydrol 238:149–178
    • (2000) J Hydrol , vol.238 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 34
    • 0034931357 scopus 로고    scopus 로고
    • Introduction of wavelet analyses to rainfall/runoffs relationship for a karstic basin: the case of Licq–Atherey karstic system (France)
    • Labat D, Ababou R, Mangin A (2001) Introduction of wavelet analyses to rainfall/runoffs relationship for a karstic basin: the case of Licq–Atherey karstic system (France). Gr Water 39:605–615
    • (2001) Gr Water , vol.39 , pp. 605-615
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 36
    • 26944470027 scopus 로고    scopus 로고
    • Test of a distributed modelling approach to predict flood flows in the karst Suoimuoi catchment in Vietnam
    • Liu YB, Batelaan O, De Smedt F, Huong NT, Tam VT (2005) Test of a distributed modelling approach to predict flood flows in the karst Suoimuoi catchment in Vietnam. Environ Geol 48:931–940
    • (2005) Environ Geol , vol.48 , pp. 931-940
    • Liu, Y.B.1    Batelaan, O.2    De Smedt, F.3    Huong, N.T.4    Tam, V.T.5
  • 38
    • 0002643625 scopus 로고
    • Contribution a` l’e´tude hydrodynamique des aquife`res karstiques
    • Mangin A (1975a) Contribution a` l’e´tude hydrodynamique des aquife`res karstiques. Ann Spe´le´ologie 29(3):283–332
    • (1975) Ann Spe´le´ologie , vol.29 , Issue.3 , pp. 283-332
    • Mangin, A.1
  • 39
    • 0002643625 scopus 로고
    • Contribution a` l’e´tude hydrodynamique des aquife`res karstiques
    • Mangin A (1975b) Contribution a` l’e´tude hydrodynamique des aquife`res karstiques. Ann Spe´le´ologie 29(4):495–601
    • (1975) Ann Spe´le´ologie , vol.29 , Issue.4 , pp. 495-601
    • Mangin, A.1
  • 40
    • 0002643624 scopus 로고
    • Contribution a` l’e´tude hydrodynamique des aquife`res karstiques
    • Mangin A (1975c) Contribution a` l’e´tude hydrodynamique des aquife`res karstiques”. Ann Spe´le´ologie 30(1):21–124
    • (1975) Ann Spe´le´ologie , vol.30 , Issue.1 , pp. 21-124
    • Mangin, A.1
  • 42
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, part I. A discussion of principles
    • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I. A discussion of principles. J Hydrol 10:282–290
    • (1970) J Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 43
    • 47249136052 scopus 로고    scopus 로고
    • Simple procedure to simulate karstic aquifers
    • Padilla A, Pulido-Bosch A (2008) Simple procedure to simulate karstic aquifers. Hydrol Process 22:1876–1884
    • (2008) Hydrol Process , vol.22 , pp. 1876-1884
    • Padilla, A.1    Pulido-Bosch, A.2
  • 45
    • 27844574663 scopus 로고    scopus 로고
    • Modeling Barton springs segment of the Edwards aquifer using MODFLOW-DCM. In: Proceedings of sinkholes and the engineering and environmental impacts of Karst
    • Sun AY, Painter SL, Green RT (2005) Modeling Barton springs segment of the Edwards aquifer using MODFLOW-DCM. In: Proceedings of sinkholes and the engineering and environmental impacts of Karst, pp 163–177
    • (2005) pp 163–177
    • Sun, A.Y.1    Painter, S.L.2    Green, R.T.3
  • 47
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using bayesian concepts and modular neural networks
    • Zhang B, Govindaraju S (2000) Prediction of watershed runoff using bayesian concepts and modular neural networks. Water Resour Res 36:753–762
    • (2000) Water Resour Res , vol.36 , pp. 753-762
    • Zhang, B.1    Govindaraju, S.2
  • 48
    • 0037066635 scopus 로고    scopus 로고
    • An evaluation of back-propagation neural networks for the optimal design of structural systems: part I. Training procedures
    • Zhang L, Subbarayan G (2002) An evaluation of back-propagation neural networks for the optimal design of structural systems: part I. Training procedures. Comput Methods Appl Mech Eng 191:2873–2886
    • (2002) Comput Methods Appl Mech Eng , vol.191 , pp. 2873-2886
    • Zhang, L.1    Subbarayan, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.