-
1
-
-
33746265501
-
Algorithms and applications for approximation nonnegative matrix factorization
-
Preprint
-
M. Berry, M. Browne, A. Langville, P. Pauca, and R. J. Plemmons, Algorithms and applications for approximation nonnegative matrix factorization, Comput Stat Data Anal (2006), Preprint.
-
(2006)
Comput Stat Data Anal
-
-
Berry, M.1
Browne, M.2
Langville, A.3
Pauca, P.4
Plemmons, R.J.5
-
2
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
D. D. Lee and H. S. Seung, Learning the parts of objects by nonnegative matrix factorization, Nature 401 (1999), 788-791.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
3
-
-
0028561099
-
Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values
-
P. Paatero and U. Tapper, Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values, Environmetrics 5 (1994), 111-126.
-
(1994)
Environmetrics
, vol.5
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
6
-
-
0642334046
-
A Fast Non-negativity-constrained Least Squares Algorithm
-
R. Bro and S. D. Jong, A Fast Non-negativity-constrained Least Squares Algorithm, J Chemomet 11(5) (1997), 393-401.
-
(1997)
J Chemomet
, vol.11
, Issue.5
, pp. 393-401
-
-
Bro, R.1
Jong, S.D.2
-
7
-
-
0003220190
-
Numerical Methods for Least Squares Problems
-
Åke Björck, Numerical Methods for Least Squares Problems, SIAM, 1996
-
(1996)
SIAM
-
-
Björck, Å.1
-
8
-
-
58849114135
-
A New Projected Quasi-Newton Approach for the Non-negative Least Squares Problem
-
Technical Report TR-06-54, Computer Sciences, The University of Texas at Austin
-
D. Kim, S. Sra, and I. S. Dhillon, A New Projected Quasi-Newton Approach for the Non-negative Least Squares Problem. Technical Report TR-06-54, Computer Sciences, The University of Texas at Austin, 2006.
-
(2006)
-
-
Kim, D.1
Sra, S.2
Dhillon, I.S.3
-
9
-
-
0030954231
-
Least-squares formulation of robust nonnegative factor analysis
-
P. Paatero, Least-squares formulation of robust nonnegative factor analysis, Chemomet Intell Lab Syst 37 (1997), 23-35.
-
(1997)
Chemomet Intell Lab Syst
, vol.37
, pp. 23-35
-
-
Paatero, P.1
-
10
-
-
0033275630
-
The multilinear engine-a table-driven least squares program for solving multilinear problems, including the N-way parallel factor analysis model
-
P. Paatero, The multilinear engine-a table-driven least squares program for solving multilinear problems, including the N-way parallel factor analysis model, J Comput Graphical Statist 8(4) (1999), 854-888.
-
(1999)
J Comput Graphical Statist
, vol.8
, Issue.4
, pp. 854-888
-
-
Paatero, P.1
-
11
-
-
0001115369
-
On iterative algorithms for linear least squares problems with bound constraints
-
M. Bierlaire, P. L. Toint, and D. Tuyttens, On iterative algorithms for linear least squares problems with bound constraints, Linear Algebra Appl 143 (1991), 111-143.
-
(1991)
Linear Algebra Appl
, vol.143
, pp. 111-143
-
-
Bierlaire, M.1
Toint, P.L.2
Tuyttens, D.3
-
13
-
-
23744469721
-
Interior-point gradient method for large-scale totally nonnegative least squares problems
-
M. Merritt and Y. Zhang, Interior-point gradient method for large-scale totally nonnegative least squares problems, J Optim Theory Appl 126(1) (2005), 191-202.
-
(2005)
J Optim Theory Appl
, vol.126
, Issue.1
, pp. 191-202
-
-
Merritt, M.1
Zhang, Y.2
-
16
-
-
0000377218
-
Projected Newton methods for optimization problems with simple constraints
-
D. P. Bertsekas, Projected Newton methods for optimization problems with simple constraints, SIAM J Control Optimizat 20(2) (1982), 221-246.
-
(1982)
SIAM J Control Optimizat
, vol.20
, Issue.2
, pp. 221-246
-
-
Bertsekas, D.P.1
-
17
-
-
0033904057
-
On the convergence of the block nonlinear gauss-seidel method under convex constraints
-
L. Grippo and M. Sciandrone, On the convergence of the block nonlinear gauss-seidel method under convex constraints, Operat Res Lett 26 (2000), 127-136.
-
(2000)
Operat Res Lett
, vol.26
, pp. 127-136
-
-
Grippo, L.1
Sciandrone, M.2
-
18
-
-
70350229391
-
NMFLAB-MATLAB Toolbox for Non-Negative Matrix Factorization
-
Online
-
A. Cichocki and R. Zdunek, NMFLAB-MATLAB Toolbox for Non-Negative Matrix Factorization, Online, 2006.
-
(2006)
-
-
Cichocki, A.1
Zdunek, R.2
-
20
-
-
23744456750
-
When Does Nonnegative Matrix Factorization Give a Correct Decomposition into Parts?
-
In
-
D. Donoho and V. Stodden, When Does Nonnegative Matrix Factorization Give a Correct Decomposition into Parts? In Neural Information Processing Systems, 2003.
-
(2003)
In Neural Information Processing Systems
-
-
Donoho, D.1
Stodden, V.2
|