메뉴 건너뛰기




Volumn 1, Issue 1, 2008, Pages 38-51

Fast projection-based methods for the least squares nonnegative matrix approximation problem

Author keywords

Active sets; Factorization; Least squares; Nonnegative matrix approximation; Projected Newton methods

Indexed keywords

CONJUGATE GRADIENT METHOD; HEURISTIC METHODS; IMAGE PROCESSING; LEAST SQUARES APPROXIMATIONS; MATRIX ALGEBRA; MATRIX FACTORIZATION; NEWTON-RAPHSON METHOD; NUMERICAL METHODS;

EID: 70350175761     PISSN: 19321872     EISSN: 19321864     Source Type: Journal    
DOI: 10.1002/sam.104     Document Type: Article
Times cited : (44)

References (20)
  • 2
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. D. Lee and H. S. Seung, Learning the parts of objects by nonnegative matrix factorization, Nature 401 (1999), 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 3
    • 0028561099 scopus 로고
    • Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper, Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values, Environmetrics 5 (1994), 111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 6
    • 0642334046 scopus 로고    scopus 로고
    • A Fast Non-negativity-constrained Least Squares Algorithm
    • R. Bro and S. D. Jong, A Fast Non-negativity-constrained Least Squares Algorithm, J Chemomet 11(5) (1997), 393-401.
    • (1997) J Chemomet , vol.11 , Issue.5 , pp. 393-401
    • Bro, R.1    Jong, S.D.2
  • 7
    • 0003220190 scopus 로고    scopus 로고
    • Numerical Methods for Least Squares Problems
    • Åke Björck, Numerical Methods for Least Squares Problems, SIAM, 1996
    • (1996) SIAM
    • Björck, Å.1
  • 8
    • 58849114135 scopus 로고    scopus 로고
    • A New Projected Quasi-Newton Approach for the Non-negative Least Squares Problem
    • Technical Report TR-06-54, Computer Sciences, The University of Texas at Austin
    • D. Kim, S. Sra, and I. S. Dhillon, A New Projected Quasi-Newton Approach for the Non-negative Least Squares Problem. Technical Report TR-06-54, Computer Sciences, The University of Texas at Austin, 2006.
    • (2006)
    • Kim, D.1    Sra, S.2    Dhillon, I.S.3
  • 9
    • 0030954231 scopus 로고    scopus 로고
    • Least-squares formulation of robust nonnegative factor analysis
    • P. Paatero, Least-squares formulation of robust nonnegative factor analysis, Chemomet Intell Lab Syst 37 (1997), 23-35.
    • (1997) Chemomet Intell Lab Syst , vol.37 , pp. 23-35
    • Paatero, P.1
  • 10
    • 0033275630 scopus 로고    scopus 로고
    • The multilinear engine-a table-driven least squares program for solving multilinear problems, including the N-way parallel factor analysis model
    • P. Paatero, The multilinear engine-a table-driven least squares program for solving multilinear problems, including the N-way parallel factor analysis model, J Comput Graphical Statist 8(4) (1999), 854-888.
    • (1999) J Comput Graphical Statist , vol.8 , Issue.4 , pp. 854-888
    • Paatero, P.1
  • 11
    • 0001115369 scopus 로고
    • On iterative algorithms for linear least squares problems with bound constraints
    • M. Bierlaire, P. L. Toint, and D. Tuyttens, On iterative algorithms for linear least squares problems with bound constraints, Linear Algebra Appl 143 (1991), 111-143.
    • (1991) Linear Algebra Appl , vol.143 , pp. 111-143
    • Bierlaire, M.1    Toint, P.L.2    Tuyttens, D.3
  • 13
    • 23744469721 scopus 로고    scopus 로고
    • Interior-point gradient method for large-scale totally nonnegative least squares problems
    • M. Merritt and Y. Zhang, Interior-point gradient method for large-scale totally nonnegative least squares problems, J Optim Theory Appl 126(1) (2005), 191-202.
    • (2005) J Optim Theory Appl , vol.126 , Issue.1 , pp. 191-202
    • Merritt, M.1    Zhang, Y.2
  • 16
    • 0000377218 scopus 로고
    • Projected Newton methods for optimization problems with simple constraints
    • D. P. Bertsekas, Projected Newton methods for optimization problems with simple constraints, SIAM J Control Optimizat 20(2) (1982), 221-246.
    • (1982) SIAM J Control Optimizat , vol.20 , Issue.2 , pp. 221-246
    • Bertsekas, D.P.1
  • 17
    • 0033904057 scopus 로고    scopus 로고
    • On the convergence of the block nonlinear gauss-seidel method under convex constraints
    • L. Grippo and M. Sciandrone, On the convergence of the block nonlinear gauss-seidel method under convex constraints, Operat Res Lett 26 (2000), 127-136.
    • (2000) Operat Res Lett , vol.26 , pp. 127-136
    • Grippo, L.1    Sciandrone, M.2
  • 18
    • 70350229391 scopus 로고    scopus 로고
    • NMFLAB-MATLAB Toolbox for Non-Negative Matrix Factorization
    • Online
    • A. Cichocki and R. Zdunek, NMFLAB-MATLAB Toolbox for Non-Negative Matrix Factorization, Online, 2006.
    • (2006)
    • Cichocki, A.1    Zdunek, R.2
  • 20
    • 23744456750 scopus 로고    scopus 로고
    • When Does Nonnegative Matrix Factorization Give a Correct Decomposition into Parts?
    • In
    • D. Donoho and V. Stodden, When Does Nonnegative Matrix Factorization Give a Correct Decomposition into Parts? In Neural Information Processing Systems, 2003.
    • (2003) In Neural Information Processing Systems
    • Donoho, D.1    Stodden, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.