메뉴 건너뛰기




Volumn 87, Issue 8, 2007, Pages 1904-1916

Nonnegative matrix factorization with constrained second-order optimization

Author keywords

Blind source separation; Fixed point algorithm; GPCG; Nonnegative matrix factorization; Quasi Newton method; Second order optimization

Indexed keywords

BLIND SOURCE SEPARATION; FACTORIZATION; IMAGE SEGMENTATION; OPTIMIZATION; PATTERN RECOGNITION;

EID: 34247173538     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2007.01.024     Document Type: Article
Times cited : (84)

References (45)
  • 1
    • 0041339710 scopus 로고    scopus 로고
    • Introducing a weighted nonnegative matrix factorization for image classification
    • Guillamet D., Vitrià J., and Schiele B. Introducing a weighted nonnegative matrix factorization for image classification. Pattern Recognition Lett. 24 14 (2003) 2447-2454
    • (2003) Pattern Recognition Lett. , vol.24 , Issue.14 , pp. 2447-2454
    • Guillamet, D.1    Vitrià, J.2    Schiele, B.3
  • 3
    • 34247102515 scopus 로고    scopus 로고
    • D. Guillamet, J. Vitrià, Classifying faces with nonnegative matrix factorization, in: Proc. of the Fifth Catalan Conference for Artificial Intelligence, Castello de la Plana, Spain, 2002.
  • 4
    • 34247164303 scopus 로고    scopus 로고
    • J.-H. Ahn, S. Kim, J.-H. Oh, S. Choi, Multiple nonnegative-matrix factorization of dynamic PET images, in: ACCV, 2004.
  • 6
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee D.D., and Seung H.S. Learning the parts of objects by nonnegative matrix factorization. Nature 401 (1999) 788-791
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 7
    • 33746217035 scopus 로고    scopus 로고
    • Non-negative matrix factorization with orthogonality constraints for chemical agent detection in raman spectra
    • Mystic, USA
    • Li H., Adali T., and Wang D.E.W. Non-negative matrix factorization with orthogonality constraints for chemical agent detection in raman spectra. IEEE Workshop on Machine Learning for Signal Processing (2005), Mystic, USA
    • (2005) IEEE Workshop on Machine Learning for Signal Processing
    • Li, H.1    Adali, T.2    Wang, D.E.W.3
  • 8
    • 33645794993 scopus 로고    scopus 로고
    • P. Carmona-Saez, R.D. Pascual-Marqui, F. Tirado, J.M. Carazo, A. Pascual-Montano, Biclustering of gene expression data by non-smooth non-negative matrix factorization, BMC Bioinformatics 7(78) (2006).
  • 11
    • 33646424384 scopus 로고    scopus 로고
    • O. Okun, H. Priisalu, Fast nonnegative matrix factorization and its application for protein fold recognition, EURASIP J. Appl. Signal Process. (2006) 8 c(Article ID 71817).
  • 12
  • 13
    • 2442624378 scopus 로고    scopus 로고
    • Non-negative matrix factorization based methods for object recognition
    • Liu W., and Zheng N. Non-negative matrix factorization based methods for object recognition. Pattern Recognition Lett. 25 8 (2004) 893-897
    • (2004) Pattern Recognition Lett. , vol.25 , Issue.8 , pp. 893-897
    • Liu, W.1    Zheng, N.2
  • 14
    • 33646697510 scopus 로고    scopus 로고
    • Learning image components for object recognition
    • Spratling M.W. Learning image components for object recognition. J. Mach. Learn. Res. 7 (2006) 793-815
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 793-815
    • Spratling, M.W.1
  • 15
    • 10044269618 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain
    • Sajda P., Du S., Brown T.R., Shungu R.S.D.C., Mao X., and Parra L.C. Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE Trans. Medical Imaging 23 12 (2004) 1453-1465
    • (2004) IEEE Trans. Medical Imaging , vol.23 , Issue.12 , pp. 1453-1465
    • Sajda, P.1    Du, S.2    Brown, T.R.3    Shungu, R.S.D.C.4    Mao, X.5    Parra, L.C.6
  • 17
    • 1242263422 scopus 로고    scopus 로고
    • P. Sajda, S. Du, L. Parra, Recovery of constituent spectra using non-negative matrix factorization, in: Proceedings of SPIE-Wavelets: Applications in Signal and Image Processing, vol. 5207, 2003, pp. 321-331.
  • 18
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • Dhillon I.S., and Modha D.M. Concept decompositions for large sparse text data using clustering. Mach. Learn. J. 42 (2001) 143-175
    • (2001) Mach. Learn. J. , vol.42 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.M.2
  • 19
    • 18444370569 scopus 로고    scopus 로고
    • Nonnegative features of spectro-temporal sounds for classification
    • Cho Y.C., and Choi S. Nonnegative features of spectro-temporal sounds for classification. Pattern Recognition Lett. 26 (2005) 1327-1336
    • (2005) Pattern Recognition Lett. , vol.26 , pp. 1327-1336
    • Cho, Y.C.1    Choi, S.2
  • 20
    • 1642529511 scopus 로고    scopus 로고
    • J.-P. Brunet, P. Tamayo, T.R. Golub, J.P. Mesirov, Metagenes and molecular pattern discovery using matrix factorization, PNAS, vol. 101, 2000, pp. 4164-4169.
  • 21
    • 14044254190 scopus 로고    scopus 로고
    • N. Rao, S.J. Shepherd, D. Yao, Extracting characteristic patterns from genome-wide expression data by non-negative matrix factorization, in: Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004), Stanford, CA, 2004.
  • 22
    • 33745683306 scopus 로고    scopus 로고
    • A. Cichocki, R. Zdunek, S. Amari, Csiszar's divergences for non-negative matrix factorization: family of new algorithms, Lecture Notes in Computer Science, vol. 3889, 2006, pp. 32-39.
  • 23
    • 0002594849 scopus 로고
    • Bayesian-based iterative method of image restoration
    • Richardson R. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62 1 (1972) 55-59
    • (1972) J. Opt. Soc. Am. , vol.62 , Issue.1 , pp. 55-59
    • Richardson, R.1
  • 24
    • 0001050714 scopus 로고
    • An iterative technique for the rectification of observed distributions
    • Lucy L. An iterative technique for the rectification of observed distributions. Astron. J. 79 6 (1974) 745-754
    • (1974) Astron. J. , vol.79 , Issue.6 , pp. 745-754
    • Lucy, L.1
  • 25
    • 0021327145 scopus 로고
    • EM reconstruction algorithms for emission and transmission tomography
    • Lange K., and Carson R. EM reconstruction algorithms for emission and transmission tomography. J. Comput. Assisted Tomogr. 8 2 (1984) 306-316
    • (1984) J. Comput. Assisted Tomogr. , vol.8 , Issue.2 , pp. 306-316
    • Lange, K.1    Carson, R.2
  • 26
    • 0031675604 scopus 로고    scopus 로고
    • Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative (RBI) methods
    • Byrne C. Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative (RBI) methods. IEEE Trans. Image Process. 7 (1998) 100-109
    • (1998) IEEE Trans. Image Process. , vol.7 , pp. 100-109
    • Byrne, C.1
  • 27
    • 0027608225 scopus 로고
    • On the relation between the ISRA and the EM algorithm for positron emission tomography
    • Pierro A.R.D. On the relation between the ISRA and the EM algorithm for positron emission tomography. IEEE Trans. Med. Imaging 12 2 (1993) 328-333
    • (1993) IEEE Trans. Med. Imaging , vol.12 , Issue.2 , pp. 328-333
    • Pierro, A.R.D.1
  • 28
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer P. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5 (2004) 1457-1469
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 29
    • 34247171520 scopus 로고    scopus 로고
    • C.-J. Lin, Projected gradient methods for non-negative matrix factorization, Neural Comput., in press, URL 〈http://www.csie.ntu.edu.tw/∼cjlin〉.
  • 30
    • 34247108871 scopus 로고    scopus 로고
    • M.T. Chu, F. Diele, R. Plemmons, S. Ragni, Optimality, computation, and interpretation of nonnegative matrix factorizations, unpublished report, October 18, 2004, URL 〈http://www.citeseer.ist.psu.edu/758183.html〉.
  • 31
    • 34547198396 scopus 로고    scopus 로고
    • M. Berry, M. Browne, A. Langville, P. Pauca, R. Plemmons, Algorithms and applications for approximate nonnegative matrix factorization, Comput. Stat. Data Anal., in press, doi:10.1016/j.csda.2006.11.006.
  • 32
    • 33746905129 scopus 로고    scopus 로고
    • Multilayer nonnegative matrix factorization
    • Cichocki A., and Zdunek R. Multilayer nonnegative matrix factorization. Electron. Lett. 42 16 (2006) 947-948
    • (2006) Electron. Lett. , vol.42 , Issue.16 , pp. 947-948
    • Cichocki, A.1    Zdunek, R.2
  • 33
    • 34247106048 scopus 로고    scopus 로고
    • A. Cichocki, R. Zdunek, Regularized alternating least squares algorithms for non-negative matrix/tensor factorization, in: Proceedings of the Fourth International Symposium on Neural Networks (ISNN), June 3-7, 2007, Nanjing, China.
  • 34
    • 34247094057 scopus 로고    scopus 로고
    • A. Cichocki, R. Zdunek, Multilayer nonnegative matrix factorization using projected gradient approaches, 13th International Conference on Neural Information Processing, Hong Kong, 2006.
  • 35
    • 23744469721 scopus 로고    scopus 로고
    • An interior-point gradient method for large-scale totally nonnegative least squares problems
    • Merritt M., and Zhang Y. An interior-point gradient method for large-scale totally nonnegative least squares problems. J. Optim. Theory Appl. 126 1 (2005) 191-202
    • (2005) J. Optim. Theory Appl. , vol.126 , Issue.1 , pp. 191-202
    • Merritt, M.1    Zhang, Y.2
  • 36
    • 33746267105 scopus 로고    scopus 로고
    • R. Zdunek, A. Cichocki, Non-negative matrix factorization with quasi-Newton optimization, Lecture Notes in Artificial Intelligence, vol. 4029, 2006, pp. 870-879.
  • 37
    • 33845418028 scopus 로고
    • On the solution of large quadratic programming problems with bound constraints
    • More J.J., and Toraldo G. On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1 1 (1991) 93-113
    • (1991) SIAM J. Optim. , vol.1 , Issue.1 , pp. 93-113
    • More, J.J.1    Toraldo, G.2
  • 38
    • 2342654684 scopus 로고    scopus 로고
    • Nonnegatively constrained convex programming method for image reconstruction
    • Bardsley J.M., and Vogel C.R. Nonnegatively constrained convex programming method for image reconstruction. SIAM J. Sci. Comput. 4 (2004) 1326-1343
    • (2004) SIAM J. Sci. Comput. , vol.4 , pp. 1326-1343
    • Bardsley, J.M.1    Vogel, C.R.2
  • 39
    • 29344468468 scopus 로고    scopus 로고
    • A nonnegatively constrained trust region algorithm for the restoration of images with an unknown blur
    • Bardsley J.M. A nonnegatively constrained trust region algorithm for the restoration of images with an unknown blur. Electron. Trans. Numer. Anal. 20 (2005) 139-153
    • (2005) Electron. Trans. Numer. Anal. , vol.20 , pp. 139-153
    • Bardsley, J.M.1
  • 40
    • 0000135303 scopus 로고
    • Method of conjugate gradients for solving linear systems
    • Hestenes M.R., and Stiefel E. Method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49 (1952) 409-436
    • (1952) J. Res. Nat. Bur. Stand. , vol.49 , pp. 409-436
    • Hestenes, M.R.1    Stiefel, E.2
  • 43
    • 33746239350 scopus 로고    scopus 로고
    • A. Cichocki, S. Amari, R. Zdunek, R. Kompass, G. Hori, Z. He, Extended SMART algorithms for non-negative matrix factorization, Lecture Notes in Artificial Intelligence, vol. 4029, 2006, pp. 548-562.
  • 44
    • 23844477225 scopus 로고    scopus 로고
    • Sparse solutions to linear inverse problems with multiple measurement vectors
    • Cotter S.F., Rao B.D., Engan K., and Kreutz-Delgado K. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53 7 (2005) 2477-2488
    • (2005) IEEE Trans. Signal Process. , vol.53 , Issue.7 , pp. 2477-2488
    • Cotter, S.F.1    Rao, B.D.2    Engan, K.3    Kreutz-Delgado, K.4
  • 45
    • 34247124377 scopus 로고    scopus 로고
    • A. Cichocki, R. Zdunek, NMFLAB for Signal and Image Processing, Technical Report, Laboratory for Advanced Brain Signal Processing, BSI RIKEN, Saitama, Japan, 2006. URL 〈http://www.bsp.brain.riken.jp〉.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.