메뉴 건너뛰기




Volumn 23, Issue 4, 2008, Pages 631-647

Computing non-negative tensor factorizations

Author keywords

Alternating least squares; Block Gauss Seidel; N dimensional arrays; Non negative least squares; Non negative tensor factorization; Regularization; Sparse solutions; Tensors

Indexed keywords

ALGEBRA; ARTIFICIAL INTELLIGENCE; BLIND SOURCE SEPARATION; COMPUTER SOFTWARE; DATA STRUCTURES; DECISION SUPPORT SYSTEMS; INFORMATION MANAGEMENT; KNOWLEDGE MANAGEMENT; LEARNING SYSTEMS; LINEAR ALGEBRA; MATHEMATICAL PROGRAMMING; MATLAB; MATRIX ALGEBRA; SEARCH ENGINES; SOFTWARE PACKAGES; TENSORS;

EID: 47249112550     PISSN: 10556788     EISSN: 10294937     Source Type: Journal    
DOI: 10.1080/10556780801996244     Document Type: Article
Times cited : (63)

References (31)
  • 1
    • 33845525246 scopus 로고    scopus 로고
    • MATLAB tensor classes for fast algorithm prototyping
    • B.W. Bader and T.G. Kolda, MATLAB tensor classes for fast algorithm prototyping, ACM Trans. Math. Software 32 (2006), pp. 635-653.
    • (2006) ACM Trans. Math. Software , vol.32 , pp. 635-653
    • Bader, B.W.1    Kolda, T.G.2
  • 2
    • 47249125915 scopus 로고    scopus 로고
    • _, MATLAB tensor toolbox version 2.0, 2006: software available at
    • _, MATLAB tensor toolbox version 2.0, 2006: software available at http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/.
  • 5
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • E. J. Candés, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math. 59 (2005), pp. 1207-1223.
    • (2005) Comm. Pure Appl. Math , vol.59 , pp. 1207-1223
    • Candés, E.J.1    Romberg, J.2    Tao, T.3
  • 6
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • _, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Info. Theory 52 (2006), pp. 489-509.
    • (2006) IEEE Trans. Info. Theory , vol.52 , pp. 489-509
    • Candés, E.J.1    Romberg, J.2    Tao, T.3
  • 7
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • S.S. Chen, D.L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit, SIAM Rev. 43 (2001). pp. 129-159.
    • (2001) SIAM Rev , vol.43 , pp. 129-159
    • Chen, S.S.1    Donoho, D.L.2    Saunders, M.A.3
  • 11
    • 47249161291 scopus 로고
    • Numerical methods for unconstrained optimization and non-linear equations, Classics in Applied Mathematics, Society of Industrial and Applied Mathematics, Philadelphia, 1996
    • Prentice-Hall. New Jersey
    • J.E. Dennis and R.B. Schnabel, Numerical methods for unconstrained optimization and non-linear equations, Classics in Applied Mathematics, Society of Industrial and Applied Mathematics, Philadelphia, 1996. Originally published: Prentice-Hall. New Jersey, 1983.
    • (1983) Originally published
    • Dennis, J.E.1    Schnabel, R.B.2
  • 12
    • 22144488449 scopus 로고    scopus 로고
    • Sparse nonnegative solution of underdeteimined linear equations by linear programming
    • D.L. Donoho and J. Tanner. Sparse nonnegative solution of underdeteimined linear equations by linear programming, Proc. Nat. Acad. Sci. USA 102 (2005), pp. 9446-9451.
    • (2005) Proc. Nat. Acad. Sci. USA , vol.102 , pp. 9446-9451
    • Donoho, D.L.1    Tanner, J.2
  • 13
    • 0037469083 scopus 로고    scopus 로고
    • Recent developments in CANDECOMP/PARAFAC algorithms: A critical review
    • N.K.M. Faber, R. Bro, and P.K. Hopke, Recent developments in CANDECOMP/PARAFAC algorithms: A critical review, Chemometr. Intell. Lab. 65 (2003), pp. 119-137.
    • (2003) Chemometr. Intell. Lab , vol.65 , pp. 119-137
    • Faber, N.K.M.1    Bro, R.2    Hopke, P.K.3
  • 16
    • 33745944718 scopus 로고    scopus 로고
    • Sparse image coding using a 3d non-negative tensor factorization
    • T. Hazan, S. Polak, and A. Shashua, Sparse image coding using a 3d non-negative tensor factorization, ICCV 1 (2005), pp. 50-57.
    • (2005) ICCV , vol.1 , pp. 50-57
    • Hazan, T.1    Polak, S.2    Shashua, A.3
  • 18
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P.O. Hoyer, Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5 (2004), pp. 1457-1469.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 20
    • 37849024658 scopus 로고    scopus 로고
    • Multilinear operators for higher-order decompositions
    • Tech. Rep, Sandia National Laboratories
    • T.G. Kolda, Multilinear operators for higher-order decompositions. Tech. Rep., Sandia National Laboratories, 2006.
    • (2006)
    • Kolda, T.G.1
  • 22
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee and H.S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401 (1999), pp. 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 23
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • T.K. Leen, T.G. Dietterich. and V. Tresp, eds, MIT Press
    • _. Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems 13, T.K. Leen, T.G. Dietterich. and V. Tresp, eds., MIT Press, 2001, pp. 556-562.
    • (2001) Advances in Neural Information Processing Systems 13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 24
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for non-negative matrix factorization
    • C.-J. Lin. Projected gradient methods for non-negative matrix factorization, Neural Computation 19 (2007), pp. 2756-2779.
    • (2007) Neural Computation , vol.19 , pp. 2756-2779
    • Lin, C.-J.1
  • 25
    • 0026678659 scopus 로고
    • On the convergence of the coordinate descent method for convex differentiable minimization
    • Z.Q. Luo and P. Tseng, On the convergence of the coordinate descent method for convex differentiable minimization, J. Optim. Theory Appl. 72 (1992), pp. 7-35.
    • (1992) J. Optim. Theory Appl , vol.72 , pp. 7-35
    • Luo, Z.Q.1    Tseng, P.2
  • 26
    • 47249129153 scopus 로고    scopus 로고
    • MCF Biological and C Learning, software available at
    • MCF Biological and C Learning. CBCL Face Database #1, 2006: software available at http://www.ai.mit.edu/projects/cbcl.
    • (2006) CBCL Face Database , Issue.1
  • 27
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error
    • P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error, Envirometrics 5 (1994), pp. 111-126.
    • (1994) Envirometrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 28
    • 0039943513 scopus 로고
    • LSQR: An algorithm for sparse linear equations and sparse least squares
    • C.C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8 (1982), pp. 43-71.
    • (1982) ACM Trans. Math. Software , vol.8 , pp. 43-71
    • Paige, C.C.1    Saunders, M.A.2
  • 29
    • 31844432834 scopus 로고    scopus 로고
    • Non-negative tensor factorization with applications to statistics and computer vision
    • A. Shashua and T. Hazan. Non-negative tensor factorization with applications to statistics and computer vision, Proceedings of ICCV, 2005.
    • (2005) Proceedings of ICCV
    • Shashua, A.1    Hazan, T.2
  • 31
    • 0034861343 scopus 로고    scopus 로고
    • Positive tensor factorization
    • M. Welling and M. Weber, Positive tensor factorization, Pattern Recog. Lett. 22 (2001), pp. 1255-1261.
    • (2001) Pattern Recog. Lett , vol.22 , pp. 1255-1261
    • Welling, M.1    Weber, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.