메뉴 건너뛰기




Volumn 117, Issue , 2015, Pages 214-225

Extreme learning machine based prediction of daily dew point temperature

Author keywords

Dew point temperature; Extreme learning machine (ELM); Prediction

Indexed keywords

BALLOONS; FORECASTING; KNOWLEDGE ACQUISITION; MEAN SQUARE ERROR; NEURAL NETWORKS; SUPPORT VECTOR MACHINES;

EID: 84940047085     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2015.08.008     Document Type: Article
Times cited : (114)

References (63)
  • 1
    • 33644624434 scopus 로고    scopus 로고
    • Dew formation and water vapor absorption in semi-arid environments - a review
    • Agam N., Berliner P.R. Dew formation and water vapor absorption in semi-arid environments - a review. J. Arid Environ. 2006, 65(4):572-590.
    • (2006) J. Arid Environ. , vol.65 , Issue.4 , pp. 572-590
    • Agam, N.1    Berliner, P.R.2
  • 3
    • 84866488723 scopus 로고    scopus 로고
    • Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction
    • Asadi S., Hadavandi E., Mehmanpazir F., Nakhostin M.M. Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction. Knowl.-Based Syst. 2012, 35:245-258.
    • (2012) Knowl.-Based Syst. , vol.35 , pp. 245-258
    • Asadi, S.1    Hadavandi, E.2    Mehmanpazir, F.3    Nakhostin, M.M.4
  • 4
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: the support vector machines approach
    • Asefa T., Kemblowski M., McKee M., Khalil A. Multi-time scale stream flow predictions: the support vector machines approach. J. Hydrol. 2006, 318:7-16.
    • (2006) J. Hydrol. , vol.318 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 5
    • 0026836829 scopus 로고
    • Neural-network approach to the determination of aquifer parameters
    • Aziz A., Wong K. Neural-network approach to the determination of aquifer parameters. Ground Water GRWAAP 1992, 30:164-166.
    • (1992) Ground Water GRWAAP , vol.30 , pp. 164-166
    • Aziz, A.1    Wong, K.2
  • 6
    • 0037199710 scopus 로고    scopus 로고
    • Aquifer parameters determination for large diameter wells using neural network approach
    • Balkhair K. Aquifer parameters determination for large diameter wells using neural network approach. J. Hydrol. 2002, 265:118-128.
    • (2002) J. Hydrol. , vol.265 , pp. 118-128
    • Balkhair, K.1
  • 7
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
    • Bartlett P.L. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inform. Theory 1998, 44(2):525-536.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 8
    • 33751206531 scopus 로고    scopus 로고
    • Reliability and performance-based design by artificial neural network
    • Chau K. Reliability and performance-based design by artificial neural network. Adv. Eng. Softw. 2007, 38:145-149.
    • (2007) Adv. Eng. Softw. , vol.38 , pp. 145-149
    • Chau, K.1
  • 9
    • 33947236271 scopus 로고    scopus 로고
    • An analysis of winter temperature and dew point under the canopy of a common Sonoran Desert nurse and the implications for positive plant interactions
    • Drezner T.D. An analysis of winter temperature and dew point under the canopy of a common Sonoran Desert nurse and the implications for positive plant interactions. J. Arid Environ. 2007, 69(4):554-568.
    • (2007) J. Arid Environ. , vol.69 , Issue.4 , pp. 554-568
    • Drezner, T.D.1
  • 10
    • 77953737810 scopus 로고    scopus 로고
    • Climatology of convective density currents in the southern foothills of the Atlas Mountains
    • Emmel C., Knippertz P., Schulz O. Climatology of convective density currents in the southern foothills of the Atlas Mountains. J. Geophys. Res. 2010, 115(D11). 10.1029/2009JD012863.
    • (2010) J. Geophys. Res. , vol.115 , Issue.D11
    • Emmel, C.1    Knippertz, P.2    Schulz, O.3
  • 11
    • 84880870764 scopus 로고    scopus 로고
    • Representing atmospheric moisture content along mountain slopes: examination using distributed sensors in the Sierra Nevada, California
    • Feld S.I., Cristea N.C., Lundquist J.D. Representing atmospheric moisture content along mountain slopes: examination using distributed sensors in the Sierra Nevada, California. Water Resour. Res. 2013, 49(7):4424-4441.
    • (2013) Water Resour. Res. , vol.49 , Issue.7 , pp. 4424-4441
    • Feld, S.I.1    Cristea, N.C.2    Lundquist, J.D.3
  • 12
    • 84896908699 scopus 로고    scopus 로고
    • Mobility prediction in mobile ad hoc networks using extreme learning machines
    • Ghouti L., Sheltami T.R., Alutaibi K.S. Mobility prediction in mobile ad hoc networks using extreme learning machines. Proc. Comput. Sci. 2013, 19:305-312.
    • (2013) Proc. Comput. Sci. , vol.19 , pp. 305-312
    • Ghouti, L.1    Sheltami, T.R.2    Alutaibi, K.S.3
  • 15
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks
    • Huang, G.B., Zhu, Q.Y., Siew, C.K., 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. In: International Joint Conference on Neural Networks. vol. 2, pp. 985-990.
    • (2004) International Joint Conference on Neural Networks , vol.2 , pp. 985-990
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 16
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 17
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 2006, 17:879-892.
    • (2006) IEEE Trans. Neural Networks , vol.17 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 18
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: a review
    • Huang G., Huang G.B., Song S., You K. Trends in extreme learning machines: a review. Neural Networks 2015, 61:32-48.
    • (2015) Neural Networks , vol.61 , pp. 32-48
    • Huang, G.1    Huang, G.B.2    Song, S.3    You, K.4
  • 19
    • 0037346516 scopus 로고    scopus 로고
    • Estimating daily dew point temperature for the northern Great Plains using maximum and minimum temperature
    • Hubbard K.G., Mahmood R., Carlson C. Estimating daily dew point temperature for the northern Great Plains using maximum and minimum temperature. Agron. J. 2003, 95(2):323-328.
    • (2003) Agron. J. , vol.95 , Issue.2 , pp. 323-328
    • Hubbard, K.G.1    Mahmood, R.2    Carlson, C.3
  • 20
    • 84870238942 scopus 로고    scopus 로고
    • Multitask multiclass support vector machines: model and experiments
    • Ji Y., Sun S. Multitask multiclass support vector machines: model and experiments. Pattern Recogn. 2013, 46(3):914-924.
    • (2013) Pattern Recogn. , vol.46 , Issue.3 , pp. 914-924
    • Ji, Y.1    Sun, S.2
  • 21
    • 63449104487 scopus 로고    scopus 로고
    • Estimation of monthly mean daily diffuse radiation in China
    • Jiang Y. Estimation of monthly mean daily diffuse radiation in China. Appl. Energy 2009, 86:1458-1464.
    • (2009) Appl. Energy , vol.86 , pp. 1458-1464
    • Jiang, Y.1
  • 22
    • 84864418975 scopus 로고    scopus 로고
    • Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system
    • Katul G.G., Oren R., Manzoni S., Higgins C., Parlange M.B. Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev. Geophys. 2012, 50(3). 10.1029/2011RG000366.
    • (2012) Rev. Geophys. , vol.50 , Issue.3
    • Katul, G.G.1    Oren, R.2    Manzoni, S.3    Higgins, C.4    Parlange, M.B.5
  • 24
    • 84891599307 scopus 로고    scopus 로고
    • Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass, Iran
    • Khorasanizadeh H., Mohammadi K., Mostafaeipour A. Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass, Iran. Energy Convers. Manage. 2014, 78:805-814.
    • (2014) Energy Convers. Manage. , vol.78 , pp. 805-814
    • Khorasanizadeh, H.1    Mohammadi, K.2    Mostafaeipour, A.3
  • 25
    • 84939264491 scopus 로고    scopus 로고
    • Modeling the physical dynamics of daily dew point temperature using soft computing techniques
    • Kim S., Singh V.P., Lee C.J., Seo Y. Modeling the physical dynamics of daily dew point temperature using soft computing techniques. KSCE J. Civil Eng. 2014, 10.1007/s12205-014-1197-4.
    • (2014) KSCE J. Civil Eng.
    • Kim, S.1    Singh, V.P.2    Lee, C.J.3    Seo, Y.4
  • 26
    • 0030812880 scopus 로고    scopus 로고
    • An improved method for estimating surface humidity from daily minimum temperature
    • Kimball J.S., Running S.W., Nemani R. An improved method for estimating surface humidity from daily minimum temperature. Agric. Forest Meteorol. 1997, 85:87-98.
    • (1997) Agric. Forest Meteorol. , vol.85 , pp. 87-98
    • Kimball, J.S.1    Running, S.W.2    Nemani, R.3
  • 27
    • 15044339284 scopus 로고    scopus 로고
    • The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications
    • Lawrence M.G. The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications. Bull. Am. Meteorol. Soc. 2005, 86:225-233.
    • (2005) Bull. Am. Meteorol. Soc. , vol.86 , pp. 225-233
    • Lawrence, M.G.1
  • 29
    • 84862024763 scopus 로고    scopus 로고
    • Rooftop dew, fog and rain collection in southwest Morocco and predictive dew modeling using neural networks
    • Lekouch I., Lekouch K., Muselli M., Mongruel A., Kabbachi B., Beysens D. Rooftop dew, fog and rain collection in southwest Morocco and predictive dew modeling using neural networks. J. Hydrol. 2012, 448-449:60-72.
    • (2012) J. Hydrol. , pp. 60-72
    • Lekouch, I.1    Lekouch, K.2    Muselli, M.3    Mongruel, A.4    Kabbachi, B.5    Beysens, D.6
  • 31
    • 15544389367 scopus 로고    scopus 로고
    • Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends
    • Lu W.Z., Wang W.J. Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends. Chemosphere 2005, 59:693-701.
    • (2005) Chemosphere , vol.59 , pp. 693-701
    • Lu, W.Z.1    Wang, W.J.2
  • 32
    • 20444401963 scopus 로고    scopus 로고
    • Assessing bias in evapotranspiration and soil moisture estimates due to the use of modeled solar radiation and dew point temperature data
    • Mahmood R., Hubbard K.G. Assessing bias in evapotranspiration and soil moisture estimates due to the use of modeled solar radiation and dew point temperature data. Agric. Forest Meteorol. 2005, 130(1-2):71-84.
    • (2005) Agric. Forest Meteorol. , vol.130 , Issue.1-2 , pp. 71-84
    • Mahmood, R.1    Hubbard, K.G.2
  • 33
    • 79958703140 scopus 로고    scopus 로고
    • Nonlinear dynamics of mean daily temperature and dewpoint time series at Babolsar, Iran, 1961-2005
    • Millán H., Ghanbarian-Alavijeh B., García-Fornaris I. Nonlinear dynamics of mean daily temperature and dewpoint time series at Babolsar, Iran, 1961-2005. Atmos. Res. 2010, 98:89-101.
    • (2010) Atmos. Res. , vol.98 , pp. 89-101
    • Millán, H.1    Ghanbarian-Alavijeh, B.2    García-Fornaris, I.3
  • 34
    • 67349200040 scopus 로고    scopus 로고
    • Long-term prediction of chaotic time series with multi-step prediction horizons by a neural network with Levenberg-Marquardt learning algorithm
    • Mirzaee H. Long-term prediction of chaotic time series with multi-step prediction horizons by a neural network with Levenberg-Marquardt learning algorithm. Chaos, Solitons Fractals 2009, 41(4):1975-1979.
    • (2009) Chaos, Solitons Fractals , vol.41 , Issue.4 , pp. 1975-1979
    • Mirzaee, H.1
  • 37
    • 84882829483 scopus 로고    scopus 로고
    • Comparison of individual and combined ANN models for prediction of air and dew point temperature
    • Nadig K., Potter W., Hoogenboom G., McClendon R. Comparison of individual and combined ANN models for prediction of air and dew point temperature. Appl. Intell. 2013, 39(2):354-366.
    • (2013) Appl. Intell. , vol.39 , Issue.2 , pp. 354-366
    • Nadig, K.1    Potter, W.2    Hoogenboom, G.3    McClendon, R.4
  • 38
    • 84928666640 scopus 로고    scopus 로고
    • An implementation of the Levenberg-Marquardt algorithm for simultaneous-energy-gradient fitting using two-layer feed-forward neural networks
    • Nguyen-Truong H.T., Le H.M. An implementation of the Levenberg-Marquardt algorithm for simultaneous-energy-gradient fitting using two-layer feed-forward neural networks. Chem. Phys. Lett. 2015, 629:40-45.
    • (2015) Chem. Phys. Lett. , vol.629 , pp. 40-45
    • Nguyen-Truong, H.T.1    Le, H.M.2
  • 39
    • 84893147895 scopus 로고    scopus 로고
    • Extreme learning machine towards dynamic model hypothesis in fish ethology research
    • Nian R., He B., Zheng B., Heeswijk M.V., Yu Q., Miche Y., et al. Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing 2014, 128:273-284.
    • (2014) Neurocomputing , vol.128 , pp. 273-284
    • Nian, R.1    He, B.2    Zheng, B.3    Heeswijk, M.V.4    Yu, Q.5    Miche, Y.6
  • 40
    • 0033942969 scopus 로고    scopus 로고
    • An extended version of the Richardson model for simulating daily weather variables
    • Parlange M.B., Katz R.W. An extended version of the Richardson model for simulating daily weather variables. J. Appl. Meteorol. 2000, 39(5):610-622.
    • (2000) J. Appl. Meteorol. , vol.39 , Issue.5 , pp. 610-622
    • Parlange, M.B.1    Katz, R.W.2
  • 41
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions
    • Rajasekaran S., Gayathri S., Lee T.L. Support vector regression methodology for storm surge predictions. Ocean Eng. 2008, 35(16):1578-1587.
    • (2008) Ocean Eng. , vol.35 , Issue.16 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.L.3
  • 43
    • 84908439577 scopus 로고    scopus 로고
    • A new theoretical formulation of dew point temperatures applicable for comfort air-cooling systems
    • Sarkar M. A new theoretical formulation of dew point temperatures applicable for comfort air-cooling systems. Energy Build. 2015, 86:243-256.
    • (2015) Energy Build. , vol.86 , pp. 243-256
    • Sarkar, M.1
  • 47
    • 84899493198 scopus 로고    scopus 로고
    • Estimation of daily dew point temperature using genetic programming and neural networks approaches
    • Shiri J., Kim S., Kisi O. Estimation of daily dew point temperature using genetic programming and neural networks approaches. Hydrol. Res. 2014, 45(2):165-181.
    • (2014) Hydrol. Res. , vol.45 , Issue.2 , pp. 165-181
    • Shiri, J.1    Kim, S.2    Kisi, O.3
  • 48
    • 77952553337 scopus 로고    scopus 로고
    • Application of extreme learning machine method for time series analysis
    • Singh R., Balasundaram S. Application of extreme learning machine method for time series analysis. Int. J. Intell. Technol. 2007, 2:256-262.
    • (2007) Int. J. Intell. Technol. , vol.2 , pp. 256-262
    • Singh, R.1    Balasundaram, S.2
  • 50
    • 84857726214 scopus 로고    scopus 로고
    • Particle swarm optimization trained neural network for aquifer parameter estimation
    • Sudheer C., Mathur S. Particle swarm optimization trained neural network for aquifer parameter estimation. KSCE J. Civil Eng. 2012, 16:298-307.
    • (2012) KSCE J. Civil Eng. , vol.16 , pp. 298-307
    • Sudheer, C.1    Mathur, S.2
  • 51
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning
    • Sun S. A survey of multi-view machine learning. Neural Comput. Appl. 2013, 23(7-8):2031-2038.
    • (2013) Neural Comput. Appl. , vol.23 , Issue.7-8 , pp. 2031-2038
    • Sun, S.1
  • 53
    • 84931561658 scopus 로고    scopus 로고
    • Extreme learning machine with parallel layer perceptrons
    • Tavares L.D., Saldanha R.R., Vieira D.A.G. Extreme learning machine with parallel layer perceptrons. Neurocomputing 2015, 166:164-171.
    • (2015) Neurocomputing , vol.166 , pp. 164-171
    • Tavares, L.D.1    Saldanha, R.R.2    Vieira, D.A.G.3
  • 56
    • 84906938183 scopus 로고    scopus 로고
    • Online sequential extreme learning machine with kernels for nonstationary time series prediction
    • Wang X., Han M. Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 2014, 145:90-97.
    • (2014) Neurocomputing , vol.145 , pp. 90-97
    • Wang, X.1    Han, M.2
  • 57
    • 84893651255 scopus 로고    scopus 로고
    • Fast prediction of protein-protein interaction sites based on extreme learning machines
    • Wang D.D., Wang R., Yan H. Fast prediction of protein-protein interaction sites based on extreme learning machines. Neurocomputing 2014, 128:258-266.
    • (2014) Neurocomputing , vol.128 , pp. 258-266
    • Wang, D.D.1    Wang, R.2    Yan, H.3
  • 58
    • 84907483639 scopus 로고    scopus 로고
    • Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search
    • Wong P.K., Wong K.I., Vong C.M., Cheung C.S. Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew. Energy 2015, 74:640-647.
    • (2015) Renew. Energy , vol.74 , pp. 640-647
    • Wong, P.K.1    Wong, K.I.2    Vong, C.M.3    Cheung, C.S.4
  • 59
    • 58249083168 scopus 로고    scopus 로고
    • Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
    • Wu K.P., Wang S.D. Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recogn. 2009, 42(5):710-717.
    • (2009) Pattern Recogn. , vol.42 , Issue.5 , pp. 710-717
    • Wu, K.P.1    Wang, S.D.2
  • 60
    • 67349170327 scopus 로고    scopus 로고
    • Localized support vector regression for time series prediction
    • Yang H., Huang K., King I., Lyu M.R. Localized support vector regression for time series prediction. Neurocomputing 2009, 72(10):2659-2669.
    • (2009) Neurocomputing , vol.72 , Issue.10 , pp. 2659-2669
    • Yang, H.1    Huang, K.2    King, I.3    Lyu, M.R.4
  • 61
    • 84893091209 scopus 로고    scopus 로고
    • Bankruptcy prediction using extreme learning machine and financial expertise
    • Yu Q., Miche Y., Séverin E., Lendasse A. Bankruptcy prediction using extreme learning machine and financial expertise. Neurocomputing 2014, 128:296-302.
    • (2014) Neurocomputing , vol.128 , pp. 296-302
    • Yu, Q.1    Miche, Y.2    Séverin, E.3    Lendasse, A.4
  • 62
    • 84885971266 scopus 로고    scopus 로고
    • Forecasting model of coal mine water inrush based on extreme learning machine
    • Zhao Z., Li P., Xu X. Forecasting model of coal mine water inrush based on extreme learning machine. Appl. Math. Inform. Sci. 2013, 7:1243-1250.
    • (2013) Appl. Math. Inform. Sci. , vol.7 , pp. 1243-1250
    • Zhao, Z.1    Li, P.2    Xu, X.3
  • 63
    • 84865770172 scopus 로고    scopus 로고
    • Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dew point temperature
    • Zounemat-Kermani M. Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dew point temperature. Meteorol. Atmos. Phys. 2012, 117(3-4):181-192.
    • (2012) Meteorol. Atmos. Phys. , vol.117 , Issue.3-4 , pp. 181-192
    • Zounemat-Kermani, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.