메뉴 건너뛰기




Volumn 46, Issue 5-6, 2016, Pages 1893-1907

Application of extreme learning machine for estimation of wind speed distribution

Author keywords

Extreme learning machine (ELM); Scale factor; Shape factor; Weibull function; Wind speed distribution

Indexed keywords

ACCURACY ASSESSMENT; EFFICIENCY MEASUREMENT; ESTIMATION METHOD; MACHINE LEARNING; PROBABILITY DENSITY FUNCTION; RELIABILITY ANALYSIS; SPATIAL DISTRIBUTION; WEATHER FORECASTING; WIND TURBINE; WIND VELOCITY;

EID: 84959098801     PISSN: 09307575     EISSN: 14320894     Source Type: Journal    
DOI: 10.1007/s00382-015-2682-2     Document Type: TB
Times cited : (66)

References (60)
  • 1
    • 67349247564 scopus 로고    scopus 로고
    • A new method to estimate Weibull parameters for wind energy applications
    • Akdag SA, Dinler A (2009) A new method to estimate Weibull parameters for wind energy applications. Energy Convers Manage 50:1761–1766
    • (2009) Energy Convers Manage , vol.50 , pp. 1761-1766
    • Akdag, S.A.1    Dinler, A.2
  • 2
    • 84904022801 scopus 로고    scopus 로고
    • An efficiency comparison of numerical methods for determining Weibull parameters for wind energy applications: a new approach applied to the northeast region of Brazil
    • Andrade CFd, Neto HFM, Costa Rocha PA, da Silva MEV (2014) An efficiency comparison of numerical methods for determining Weibull parameters for wind energy applications: a new approach applied to the northeast region of Brazil. Energy Convers Manag 86:801–808
    • (2014) Energy Convers Manag , vol.86 , pp. 801-808
    • Andrade, C.F.1    Neto, H.F.M.2    Costa Rocha, P.A.3    da Silva, M.E.V.4
  • 4
    • 84906668609 scopus 로고    scopus 로고
    • Comparative study of numerical methods for determining Weibull parameters for wind energy potential
    • Arslan T, Bulut YM, Yavuz AA (2014) Comparative study of numerical methods for determining Weibull parameters for wind energy potential. Renew Sustain Energy Rev 40:820–825
    • (2014) Renew Sustain Energy Rev , vol.40 , pp. 820-825
    • Arslan, T.1    Bulut, Y.M.2    Yavuz, A.A.3
  • 5
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: the support vector machines approach
    • Asefa T, Kemblowski M, McKee M, Khalil A (2006) Multi-time scale stream flow predictions: the support vector machines approach. J Hydrol 318(1):7–16
    • (2006) J Hydrol , vol.318 , Issue.1 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 6
    • 0026836829 scopus 로고
    • Neural-network approach to the determination of aquifer parameters
    • Aziz A, Wong K (1992) Neural-network approach to the determination of aquifer parameters. Ground Water GRWAAP 30:164–166
    • (1992) Ground Water GRWAAP , vol.30 , pp. 164-166
    • Aziz, A.1    Wong, K.2
  • 7
    • 0036997582 scopus 로고    scopus 로고
    • Rainfall runoff modeling based on genetic programming
    • Babovic V, Keijzer M (2000) Rainfall runoff modeling based on genetic programming. Nord Hydrol 33:331–346
    • (2000) Nord Hydrol , vol.33 , pp. 331-346
    • Babovic, V.1    Keijzer, M.2
  • 8
    • 0037199710 scopus 로고    scopus 로고
    • Aquifer parameters determination for large diameter wells using neural network approach
    • Balkhair K (2002) Aquifer parameters determination for large diameter wells using neural network approach. J Hydrol 265:118–128
    • (2002) J Hydrol , vol.265 , pp. 118-128
    • Balkhair, K.1
  • 9
    • 54149109712 scopus 로고    scopus 로고
    • Status, plans and technologies for offshore wind turbines in Europe and North America
    • Breton SP, Moe G (2009) Status, plans and technologies for offshore wind turbines in Europe and North America. Renew Energy 34(3):646–654
    • (2009) Renew Energy , vol.34 , Issue.3 , pp. 646-654
    • Breton, S.P.1    Moe, G.2
  • 10
    • 33751206531 scopus 로고    scopus 로고
    • Reliability and performance-based design by artificial neural network
    • Chau K (2007) Reliability and performance-based design by artificial neural network. Adv Eng Softw 38:145–149
    • (2007) Adv Eng Softw , vol.38 , pp. 145-149
    • Chau, K.1
  • 11
    • 82355173126 scopus 로고    scopus 로고
    • A comparison between wind speed distributions derived from the maximum entropy principle and Weibull distribution. Case of study; six regions of Algeria
    • Chellali F, Khellaf A, Belouchrani A, Khanniche R (2012) A comparison between wind speed distributions derived from the maximum entropy principle and Weibull distribution. Case of study; six regions of Algeria. Renew Sustain Energy Rev 16:379–385
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 379-385
    • Chellali, F.1    Khellaf, A.2    Belouchrani, A.3    Khanniche, R.4
  • 12
    • 0003554988 scopus 로고    scopus 로고
    • Support vector machines for large-scale regression problems. Institut Dalle Molle d’Intelligence Artificelle Perceptive (IDIAP), Martigny, Switzerland
    • Collobert R, Bengio S (2000) Support vector machines for large-scale regression problems. Institut Dalle Molle d’Intelligence Artificelle Perceptive (IDIAP), Martigny, Switzerland, Technical Report IDIAP-RR-00-17
    • (2000) Technical Report IDIAP-RR-00-17
    • Collobert, R.1    Bengio, S.2
  • 13
    • 84858997986 scopus 로고    scopus 로고
    • Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. I. Predicting wind speed
    • Curry CL, Dvd Kamp, Monahan AH (2012) Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. I. Predicting wind speed. Clim Dyn 38:1281–1299
    • (2012) Clim Dyn , vol.38 , pp. 1281-1299
    • Curry, C.L.1    Dvd, K.2    Monahan, A.H.3
  • 14
    • 85031860927 scopus 로고    scopus 로고
    • Neural network toolbox for use with MATLAB, users guide, version 3.0
    • Natick., Mass
    • Demuth H, Beale M (1997) Neural network toolbox for use with MATLAB, users guide, version 3.0. The Mathworks Inc., Natick., Mass
    • (1997) The Mathworks Inc.
    • Demuth, H.1    Beale, M.2
  • 15
    • 84874947345 scopus 로고    scopus 로고
    • Relationship between wind power production and North Atlantic atmospheric circulation over the northeastern Iberian Peninsula
    • García-Bustamante E, González-Rouco JF, Navarro J, Xoplaki E, Luterbacher J, Jiménez PA et al (2013) Relationship between wind power production and North Atlantic atmospheric circulation over the northeastern Iberian Peninsula. Clim Dyn 40:935–949
    • (2013) Clim Dyn , vol.40 , pp. 935-949
    • García-Bustamante, E.1    González-Rouco, J.F.2    Navarro, J.3    Xoplaki, E.4    Luterbacher, J.5    Jiménez, P.A.6
  • 16
    • 84896908699 scopus 로고    scopus 로고
    • Mobility prediction in mobile ad hoc networks using extreme learning machines
    • Ghouti L, Sheltami TR, Alutaibi KS (2013) Mobility prediction in mobile ad hoc networks using extreme learning machines. Proced Comput Sci 19:305–312
    • (2013) Proced Comput Sci , vol.19 , pp. 305-312
    • Ghouti, L.1    Sheltami, T.R.2    Alutaibi, K.S.3
  • 17
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang C, Davis L, Townshend J (2002) An assessment of support vector machines for land cover classification. Int J Remote Sens 23(4):725–749
    • (2002) Int J Remote Sens , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.2    Townshend, J.3
  • 19
    • 84895929211 scopus 로고    scopus 로고
    • Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran
    • Mohammadi K, Mostafaeipour A, Sabzpooshani M (2014) Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran. Energy 67:117–128
    • (2014) Energy , vol.67 , pp. 117-128
    • Mohammadi, K.1    Mostafaeipour, A.2    Sabzpooshani, M.3
  • 21
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang GB, Zhu QY, Siew CK (2006a) Extreme learning machine: theory and applications. Neurocomputing 70:489–501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 22
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang GB, Chen L, Siew CK (2006b) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17:879–892
    • (2006) IEEE Trans Neural Netw , vol.17 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 23
    • 84870238942 scopus 로고    scopus 로고
    • Multitask multiclass support vector machines: model and experiments
    • Ji Y, Sun S (2013) Multitask multiclass support vector machines: model and experiments. Pattern Recogn 46(3):914–924
    • (2013) Pattern Recogn , vol.46 , Issue.3 , pp. 914-924
    • Ji, Y.1    Sun, S.2
  • 27
    • 84155172207 scopus 로고    scopus 로고
    • Domestic application of micro wind turbines in Ireland: investigation of their economic viability
    • Li Z, Boyle F, Reynolds A (2012) Domestic application of micro wind turbines in Ireland: investigation of their economic viability. Renew Energy 41:64–74
    • (2012) Renew Energy , vol.41 , pp. 64-74
    • Li, Z.1    Boyle, F.2    Reynolds, A.3
  • 29
    • 15544389367 scopus 로고    scopus 로고
    • Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends
    • Lu W-Z, Wang W-J (2005) Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends. Chemosphere 59(5):693–701
    • (2005) Chemosphere , vol.59 , Issue.5 , pp. 693-701
    • Lu, W.-Z.1    Wang, W.-J.2
  • 31
    • 84867415139 scopus 로고    scopus 로고
    • Using different methods for comprehensive study of wind turbine utilization in Zarrineh
    • Mohammadi K, Mostafaeipour A (2013a) Using different methods for comprehensive study of wind turbine utilization in Zarrineh. Iran Energy Convers Manag 65:463–470
    • (2013) Iran Energy Convers Manag , vol.65 , pp. 463-470
    • Mohammadi, K.1    Mostafaeipour, A.2
  • 32
    • 84883888801 scopus 로고    scopus 로고
    • Economic feasibility of developing wind turbines in Aligoodarz
    • Mohammadi K, Mostafaeipour A (2013b) Economic feasibility of developing wind turbines in Aligoodarz. Iran Energy Convers Manag 76:645–653
    • (2013) Iran Energy Convers Manag , vol.76 , pp. 645-653
    • Mohammadi, K.1    Mostafaeipour, A.2
  • 34
    • 84893147895 scopus 로고    scopus 로고
    • Extreme learning machine towards dynamic model hypothesis in fish ethology research
    • Nian R, He B, Zheng B, Heeswijk MV, Yu Q, Miche Y et al (2014) Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing 128:273–284
    • (2014) Neurocomputing , vol.128 , pp. 273-284
    • Nian, R.1    He, B.2    Zheng, B.3    Heeswijk, M.V.4    Yu, Q.5    Miche, Y.6
  • 35
    • 67650766747 scopus 로고    scopus 로고
    • Renewable energy resources and technologies applicable to Ireland
    • O’Rourke F, Boyle F, Reynolds A (2009) Renewable energy resources and technologies applicable to Ireland. Renew Sustain Energy Rev 13(8):1975–1984
    • (2009) Renew Sustain Energy Rev , vol.13 , Issue.8 , pp. 1975-1984
    • O’Rourke, F.1    Boyle, F.2    Reynolds, A.3
  • 36
    • 77956084111 scopus 로고    scopus 로고
    • Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy)
    • Ouammi A, Dagdougui H, Sacile R, Mimet A (2010) Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy). Renew Sustain Energy Rev 14:1959–1968
    • (2010) Renew Sustain Energy Rev , vol.14 , pp. 1959-1968
    • Ouammi, A.1    Dagdougui, H.2    Sacile, R.3    Mimet, A.4
  • 38
    • 84908396385 scopus 로고    scopus 로고
    • Wind speed and power density analysis based on Waybill and Rayleigh distributions (a case study: Firouzkooh county of Iran)
    • Pishgar-Komleh SH, Keyhani A, Sefeedpari P (2015) Wind speed and power density analysis based on Waybill and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renew Sustain Energy Rev 42:313–322
    • (2015) Renew Sustain Energy Rev , vol.42 , pp. 313-322
    • Pishgar-Komleh, S.H.1    Keyhani, A.2    Sefeedpari, P.3
  • 39
    • 27744500009 scopus 로고    scopus 로고
    • Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model
    • Pryor SC, Barthelmie RJ, Kjellstrӧm E (2005) Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model. Clim Dyn 25:815–835
    • (2005) Clim Dyn , vol.25 , pp. 815-835
    • Pryor, S.C.1    Barthelmie, R.J.2    Kjellstrӧm, E.3
  • 40
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions
    • Rajasekaran S, Gayathri S, Lee T-L (2008) Support vector regression methodology for storm surge predictions. Ocean Eng 35(16):1578–1587
    • (2008) Ocean Eng , vol.35 , Issue.16 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.-L.3
  • 41
    • 84870815121 scopus 로고    scopus 로고
    • Global trend in wind power with special focus on the top five wind power producing countries
    • Sahu BK, Hiloidhari M, Baruah DC (2013) Global trend in wind power with special focus on the top five wind power producing countries. Renew Sustain Energy Rev 19:348–359
    • (2013) Renew Sustain Energy Rev , vol.19 , pp. 348-359
    • Sahu, B.K.1    Hiloidhari, M.2    Baruah, D.C.3
  • 42
    • 84904741064 scopus 로고    scopus 로고
    • Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–extreme learning machine approach
    • Salcedo-Sanz S, Pastor-Sánchez A, Prieto L, Blanco-Aguilera A, García-Herrera R (2014) Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–extreme learning machine approach. Energy Convers Manag 87:10–18
    • (2014) Energy Convers Manag , vol.87 , pp. 10-18
    • Salcedo-Sanz, S.1    Pastor-Sánchez, A.2    Prieto, L.3    Blanco-Aguilera, A.4    García-Herrera, R.5
  • 45
    • 77952553337 scopus 로고    scopus 로고
    • Application of extreme learning machine method for time series analysis
    • Singh R, Balasundaram S (2007) Application of extreme learning machine method for time series analysis. Int J Intell Technol 2:256–262
    • (2007) Int J Intell Technol , vol.2 , pp. 256-262
    • Singh, R.1    Balasundaram, S.2
  • 46
    • 84857726214 scopus 로고    scopus 로고
    • Particle swarm optimization trained neural network for aquifer parameter estimation KSCE
    • Sudheer C, Mathur S (2012) Particle swarm optimization trained neural network for aquifer parameter estimation KSCE. J Civil Eng 16:298–307
    • (2012) J Civil Eng , vol.16 , pp. 298-307
    • Sudheer, C.1    Mathur, S.2
  • 47
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning
    • Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23(7–8):2031–2038
    • (2013) Neural Comput Appl , vol.23 , Issue.7-8 , pp. 2031-2038
    • Sun, S.1
  • 48
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks. In: applications and the internet, proceedings
    • Sung AH, Mukkamala S (2003) Identifying important features for intrusion detection using support vector machines and neural networks. In: applications and the internet, proceedings, 2003 symposium on IEEE 209‒16
    • (2003) 2003 symposium on IEEE 209‒16
    • Sung, A.H.1    Mukkamala, S.2
  • 49
    • 77956069827 scopus 로고    scopus 로고
    • Assessment of wind power potential for turbine installation in coastal areas of Turkey
    • Ucar A, Balo F (2010) Assessment of wind power potential for turbine installation in coastal areas of Turkey. Renew Sustain Energy Rev 14:1901–1912
    • (2010) Renew Sustain Energy Rev , vol.14 , pp. 1901-1912
    • Ucar, A.1    Balo, F.2
  • 53
    • 84899566603 scopus 로고    scopus 로고
    • Probabilistic forecasting of wind power generation using extreme learning machine
    • Wan C, Xu Z, Pinson P, Yang Dong Z, Po Wong K (2014) Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Trans Power Syst 29:1033–1044
    • (2014) IEEE Trans Power Syst , vol.29 , pp. 1033-1044
    • Wan, C.1    Xu, Z.2    Pinson, P.3    Yang Dong, Z.4    Po Wong, K.5
  • 54
    • 84906938183 scopus 로고    scopus 로고
    • Online sequential extreme learning machine with kernels for nonstationary time series prediction
    • Wang X, Han M (2014) Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 145:90–97
    • (2014) Neurocomputing , vol.145 , pp. 90-97
    • Wang, X.1    Han, M.2
  • 55
    • 84893651255 scopus 로고    scopus 로고
    • Fast prediction of protein–protein interaction sites based on extreme learning machines
    • Wang DD, Wang R, Yan H (2014) Fast prediction of protein–protein interaction sites based on extreme learning machines. Neurocomputing 128:258–266
    • (2014) Neurocomputing , vol.128 , pp. 258-266
    • Wang, D.D.1    Wang, R.2    Yan, H.3
  • 56
    • 84907483639 scopus 로고    scopus 로고
    • Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search
    • Wong PK, Wong KI, Vong CM, Cheung CS (2015) Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew Energy 74:640–647
    • (2015) Renew Energy , vol.74 , pp. 640-647
    • Wong, P.K.1    Wong, K.I.2    Vong, C.M.3    Cheung, C.S.4
  • 57
    • 58249083168 scopus 로고    scopus 로고
    • Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
    • Wu K-P, Wang S-D (2009) Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recogn 42(5):710–717
    • (2009) Pattern Recogn , vol.42 , Issue.5 , pp. 710-717
    • Wu, K.-P.1    Wang, S.-D.2
  • 58
    • 84870254661 scopus 로고    scopus 로고
    • Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system
    • Wu S, Wang Y, Cheng S (2013) Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system. Neurocomputing 102:163–175
    • (2013) Neurocomputing , vol.102 , pp. 163-175
    • Wu, S.1    Wang, Y.2    Cheng, S.3
  • 59
    • 67349170327 scopus 로고    scopus 로고
    • Localized support vector regression for time series prediction
    • Yang H, Huang K, King I, Lyu MR (2009) Localized support vector regression for time series prediction. Neurocomputing 72(10):2659–2669
    • (2009) Neurocomputing , vol.72 , Issue.10 , pp. 2659-2669
    • Yang, H.1    Huang, K.2    King, I.3    Lyu, M.R.4
  • 60
    • 84893091209 scopus 로고    scopus 로고
    • Bankruptcy prediction using extreme learning machine and financial expertise
    • Yu Q, Miche Y, Séverin E, Lendasse A (2014) Bankruptcy prediction using extreme learning machine and financial expertise. Neurocomputing 128:296–302
    • (2014) Neurocomputing , vol.128 , pp. 296-302
    • Yu, Q.1    Miche, Y.2    Séverin, E.3    Lendasse, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.