메뉴 건너뛰기




Volumn 166, Issue , 2015, Pages 164-171

Extreme learning machine with parallel layer perceptrons

Author keywords

Extreme learning machine; Least square estimate; Parallel layer perceptrons; Structural risk minimization

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; KNOWLEDGE ACQUISITION; MACHINE LEARNING; NETWORK LAYERS; NUMBER THEORY; RISK PERCEPTION;

EID: 84931561658     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.04.018     Document Type: Article
Times cited : (24)

References (68)
  • 1
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2(4):303-314.
    • (1989) Math. Control Signals Syst. , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 2
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Netw. 1989, 2(3):183-192.
    • (1989) Neural Netw. , vol.2 , Issue.3 , pp. 183-192
    • Funahashi, K.1
  • 3
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang G.B., Babri H.A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw. 1998, 9(1):224-229.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.B.1    Babri, H.A.2
  • 6
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine. theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine. theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 9
    • 84922032837 scopus 로고    scopus 로고
    • Multi-dimensional extreme learning machine
    • Mao W., Zhao S., Mu X., Wang H. Multi-dimensional extreme learning machine. Neurocomputing 2015, 149:160-170.
    • (2015) Neurocomputing , vol.149 , pp. 160-170
    • Mao, W.1    Zhao, S.2    Mu, X.3    Wang, H.4
  • 11
    • 84867839878 scopus 로고    scopus 로고
    • Universal approximation of extreme learning machine with adaptive growth of hidden nodes
    • Zhang R., Lan Y., Huang G.B., Xu Z.B. Universal approximation of extreme learning machine with adaptive growth of hidden nodes. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23(2):365-371.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.2 , pp. 365-371
    • Zhang, R.1    Lan, Y.2    Huang, G.B.3    Xu, Z.B.4
  • 12
    • 84879753900 scopus 로고    scopus 로고
    • A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation
    • Vuković N., Miljković Z. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation. Neural Netw. 2013, 46:210-226.
    • (2013) Neural Netw. , vol.46 , pp. 210-226
    • Vuković, N.1    Miljković, Z.2
  • 15
    • 84890110727 scopus 로고    scopus 로고
    • Dynamic extreme learning machine and its approximation capability
    • Zhang R., Lan Y., Huang G.B., Xu Z.B., Soh Y.C. Dynamic extreme learning machine and its approximation capability. IEEE Trans. Cybern. 2013, 2168-2267.
    • (2013) IEEE Trans. Cybern. , pp. 2168-2267
    • Zhang, R.1    Lan, Y.2    Huang, G.B.3    Xu, Z.B.4    Soh, Y.C.5
  • 17
    • 84870236270 scopus 로고    scopus 로고
    • Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity
    • Advances in Extreme Learning Machines (ELM 2011)
    • Neumann K., Steil J.J. Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity. Neurocomputing 2013, 102:23-30. Advances in Extreme Learning Machines (ELM 2011).
    • (2013) Neurocomputing , vol.102 , pp. 23-30
    • Neumann, K.1    Steil, J.J.2
  • 18
    • 84922032836 scopus 로고    scopus 로고
    • Binary/ternary extreme learning machines
    • van Heeswijk M., Miche Y. Binary/ternary extreme learning machines. Neurocomputing 2015, 149:187-197.
    • (2015) Neurocomputing , vol.149 , pp. 187-197
    • van Heeswijk, M.1    Miche, Y.2
  • 20
    • 84878507977 scopus 로고    scopus 로고
    • An improved evolutionary extreme learning machine based on particle swarm optimization
    • Han F., Yao H.F., Ling Q.H. An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 2013, 116:87-93.
    • (2013) Neurocomputing , vol.116 , pp. 87-93
    • Han, F.1    Yao, H.F.2    Ling, Q.H.3
  • 21
    • 84893523385 scopus 로고    scopus 로고
    • Evolutionary extreme learning machine based on particle swarm optimization and clustering strategies
    • L. Pacifico, T. Ludermir, Evolutionary extreme learning machine based on particle swarm optimization and clustering strategies, in: The 2013 International Joint Conference on Neural Networks, 2013, pp. 2161-4393.
    • (2013) The 2013 International Joint Conference on Neural Networks , pp. 2161-4393
    • Pacifico, L.1    Ludermir, T.2
  • 22
    • 84922018056 scopus 로고    scopus 로고
    • LARSEN-ELM. Selective ensemble of extreme learning machines using LARS for blended data
    • Han B., He B., Nian R., Ma M., Zhang S., Li M., Lendasse A. LARSEN-ELM. Selective ensemble of extreme learning machines using LARS for blended data. Neurocomputing 2015, 149:285-294.
    • (2015) Neurocomputing , vol.149 , pp. 285-294
    • Han, B.1    He, B.2    Nian, R.3    Ma, M.4    Zhang, S.5    Li, M.6    Lendasse, A.7
  • 23
    • 84894082731 scopus 로고    scopus 로고
    • Differential evolution extreme learning machine for the classification of hyperspectral images
    • Bazi Y., Alajlan N., Melgani F., AlHichri H., Malek S., Yager R. Differential evolution extreme learning machine for the classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2014, 11(6):1066-1070.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.6 , pp. 1066-1070
    • Bazi, Y.1    Alajlan, N.2    Melgani, F.3    AlHichri, H.4    Malek, S.5    Yager, R.6
  • 25
    • 84906938183 scopus 로고    scopus 로고
    • Online sequential extreme learning machine with kernels for nonstationary time series prediction
    • Wang X., Han M. Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 2014, 145:90-97.
    • (2014) Neurocomputing , vol.145 , pp. 90-97
    • Wang, X.1    Han, M.2
  • 26
    • 84919934813 scopus 로고    scopus 로고
    • Optimization-based extreme learning machine with multi-kernel learning approach for classification
    • L.l. Cao, W.b. Huang, F.c. Sun, Optimization-based extreme learning machine with multi-kernel learning approach for classification, in: 22nd International Conference on Pattern Recognition, 2014, pp. 3564-3569.
    • (2014) 22nd International Conference on Pattern Recognition , pp. 3564-3569
    • Cao, L.L.1    Huang, W.B.2    Sun, F.C.3
  • 28
    • 84922015329 scopus 로고    scopus 로고
    • Multiple kernel extreme learning machine
    • Liu X., Wang L., Huang G.b., Zhang J. Multiple kernel extreme learning machine. Neurocomputing 2015, 149:253-264.
    • (2015) Neurocomputing , vol.149 , pp. 253-264
    • Liu, X.1    Wang, L.2    Huang, G.3    Zhang, J.4
  • 29
    • 84877768115 scopus 로고    scopus 로고
    • Fuzzy extreme learning machine for classification
    • Zhang W., Ji H. Fuzzy extreme learning machine for classification. Electron. Lett. 2013, 49(7):448-450.
    • (2013) Electron. Lett. , vol.49 , Issue.7 , pp. 448-450
    • Zhang, W.1    Ji, H.2
  • 31
    • 84919642556 scopus 로고    scopus 로고
    • Is extreme learning machine feasible? a theoretical assessment (Part I)
    • Liu X., Lin S., Fang J., Xu Z. Is extreme learning machine feasible? a theoretical assessment (Part I). IEEE Trans. Neural Netw. Learn. Syst. 2014, 26(1):7-20.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.1 , pp. 7-20
    • Liu, X.1    Lin, S.2    Fang, J.3    Xu, Z.4
  • 32
    • 84919660197 scopus 로고    scopus 로고
    • Is extreme learning machine feasible? a theoretical assessment (Part II)
    • Lin S., Liu X., Fang J., Xu Z. Is extreme learning machine feasible? a theoretical assessment (Part II). IEEE Trans. Neural Netw. Learn. Syst. 2014, 26(1):21-34.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.1 , pp. 21-34
    • Lin, S.1    Liu, X.2    Fang, J.3    Xu, Z.4
  • 36
    • 84907436729 scopus 로고    scopus 로고
    • Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images
    • Bencherif M., Bazi Y., Guessoum A., Alajlan N., Melgani F., AlHichri H. Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images. IEEE Geosci. Remote Sens. Lett. 2014, 12(3):527-531.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.3 , pp. 527-531
    • Bencherif, M.1    Bazi, Y.2    Guessoum, A.3    Alajlan, N.4    Melgani, F.5    AlHichri, H.6
  • 38
    • 84882799564 scopus 로고    scopus 로고
    • Hypoglycemia prediction using extreme learning machine (ELM) and regularized ELM
    • X. Mo, Y. Wang, X. Wu, Hypoglycemia prediction using extreme learning machine (ELM) and regularized ELM, in: Control and Decision Conference, 2013, pp. 4405-4409.
    • (2013) Control and Decision Conference , pp. 4405-4409
    • Mo, X.1    Wang, Y.2    Wu, X.3
  • 39
    • 84922020238 scopus 로고    scopus 로고
    • Parallel online sequential extreme learning machine based on MapReduce
    • Wang B., Huang S., Qiu J., Liu Y., Wang G. Parallel online sequential extreme learning machine based on MapReduce. Neurocomputing 2015, 149:224-232.
    • (2015) Neurocomputing , vol.149 , pp. 224-232
    • Wang, B.1    Huang, S.2    Qiu, J.3    Liu, Y.4    Wang, G.5
  • 41
    • 84896834052 scopus 로고    scopus 로고
    • Extreme learning machine for ranking. generalization analysis and applications
    • Chen H., Peng J., Zhou Y., Lib L., Pana Z. Extreme learning machine for ranking. generalization analysis and applications. Neural Netw. 2014, 53:119-126.
    • (2014) Neural Netw. , vol.53 , pp. 119-126
    • Chen, H.1    Peng, J.2    Zhou, Y.3    Lib, L.4    Pana, Z.5
  • 42
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines. a review
    • Huang G., Huang G.B., Song S., You K. Trends in extreme learning machines. a review. Neural Netw. 2015, 61:32-48.
    • (2015) Neural Netw. , vol.61 , pp. 32-48
    • Huang, G.1    Huang, G.B.2    Song, S.3    You, K.4
  • 43
    • 49649091536 scopus 로고    scopus 로고
    • The Q-norm complexity measure and the minimum gradient method. a novel approach to the machine learning structural risk minimization problem
    • Vieira D.A.G., Takahashi R.H.C., Palade V., Vasconcelos J.A., Caminhas W.M. The Q-norm complexity measure and the minimum gradient method. a novel approach to the machine learning structural risk minimization problem. IEEE Trans. Neural Netw. 2008, 19(8):1415-1430.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.8 , pp. 1415-1430
    • Vieira, D.A.G.1    Takahashi, R.H.C.2    Palade, V.3    Vasconcelos, J.A.4    Caminhas, W.M.5
  • 44
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks. the size of the weights is more important than the size of the network
    • Bartlett P.L. The sample complexity of pattern classification with neural networks. the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theor. 2006, 44(2):525-536.
    • (2006) IEEE Trans. Inf. Theor. , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 45
    • 0040864988 scopus 로고    scopus 로고
    • Principles of structural risk minimization for learning theory
    • Vapnik V.N. Principles of structural risk minimization for learning theory. Adv. Neural Inf. Process. Syst. 2006, 4:831-838.
    • (2006) Adv. Neural Inf. Process. Syst. , vol.4 , pp. 831-838
    • Vapnik, V.N.1
  • 50
    • 44049086696 scopus 로고    scopus 로고
    • Characterizing inclusions in a non-homogenous GPR problem by Neural Networks
    • Travassos L., Vieira D.A.G., Ida N., Vollaire C., Nicolas A. Characterizing inclusions in a non-homogenous GPR problem by Neural Networks. IEEE Trans. Mag. 2008, 44:1630-1633.
    • (2008) IEEE Trans. Mag. , vol.44 , pp. 1630-1633
    • Travassos, L.1    Vieira, D.A.G.2    Ida, N.3    Vollaire, C.4    Nicolas, A.5
  • 51
    • 70749161302 scopus 로고    scopus 로고
    • In the use of parametric and non parametric algorithms for the non destructive evaluation of concrete structures
    • N.I.,A.N.
    • Travassos L., Vieira D.A.G., N.I., A.N. In the use of parametric and non parametric algorithms for the non destructive evaluation of concrete structures. Res. Nondestr. Eval. 2009, 20:71-93.
    • (2009) Res. Nondestr. Eval. , vol.20 , pp. 71-93
    • Travassos, L.1    Vieira, D.A.G.2
  • 52
    • 61449223713 scopus 로고    scopus 로고
    • Noise reduction in a non-homogenous ground penetrating radar problem by multiobjective neural networks
    • Travassos X., Nicolas A., Vieira D., Palade V. Noise reduction in a non-homogenous ground penetrating radar problem by multiobjective neural networks. IEEE Trans. Mag. 2009, 45:1454-1457.
    • (2009) IEEE Trans. Mag. , vol.45 , pp. 1454-1457
    • Travassos, X.1    Nicolas, A.2    Vieira, D.3    Palade, V.4
  • 54
    • 67349112381 scopus 로고    scopus 로고
    • Signal denoising in engineering problems through the minimum gradient method
    • Vieira D., Travassos L., Saldanha R.R., Palade V. Signal denoising in engineering problems through the minimum gradient method. Neurocomputing (Amsterdam) 2009, 72:2270-2275.
    • (2009) Neurocomputing (Amsterdam) , vol.72 , pp. 2270-2275
    • Vieira, D.1    Travassos, L.2    Saldanha, R.R.3    Palade, V.4
  • 55
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2(5):359-366.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 57
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 60
    • 84924582748 scopus 로고    scopus 로고
    • Sentic patterns. dependency-based rules for concept-level sentiment analysis
    • Poria S., Cambria E., Winterstein G., Huang G.B. Sentic patterns. dependency-based rules for concept-level sentiment analysis. Knowl. Based Syst. 2014, 69:45-63.
    • (2014) Knowl. Based Syst. , vol.69 , pp. 45-63
    • Poria, S.1    Cambria, E.2    Winterstein, G.3    Huang, G.B.4
  • 61
    • 84901037072 scopus 로고    scopus 로고
    • Hybrid soft computing schemes for the prediction of import demand of crude oil in Taiwan
    • Shao Y.E., Lu C.J., Hou C.D. Hybrid soft computing schemes for the prediction of import demand of crude oil in Taiwan. Math. Prob. Eng. 2014, 2014:11.
    • (2014) Math. Prob. Eng. , vol.2014 , pp. 11
    • Shao, Y.E.1    Lu, C.J.2    Hou, C.D.3
  • 62
    • 84911059278 scopus 로고    scopus 로고
    • Facial expression recognition based on discriminant neighborhood preserving nonnegative tensor factorization and ELM
    • An G., Liu S., Jin Y., Ruan Q., Lu S. Facial expression recognition based on discriminant neighborhood preserving nonnegative tensor factorization and ELM. Math. Prob. Eng. 2014, 2014:10.
    • (2014) Math. Prob. Eng. , vol.2014 , pp. 10
    • An, G.1    Liu, S.2    Jin, Y.3    Ruan, Q.4    Lu, S.5
  • 63
    • 84969228568 scopus 로고    scopus 로고
    • An ELM-based model for affective analogical reasoning
    • Cambria E., Gastaldo P., Bisio F., Zunino R. An ELM-based model for affective analogical reasoning. Neurocomputing 2015, 149:443-455.
    • (2015) Neurocomputing , vol.149 , pp. 443-455
    • Cambria, E.1    Gastaldo, P.2    Bisio, F.3    Zunino, R.4
  • 64
    • 84923377302 scopus 로고    scopus 로고
    • Improved extreme learning machine for multivariate time series online sequential prediction
    • Wang X., Han M. Improved extreme learning machine for multivariate time series online sequential prediction. Eng. Appl. Artif. Intell. 2015, 40:28-36.
    • (2015) Eng. Appl. Artif. Intell. , vol.40 , pp. 28-36
    • Wang, X.1    Han, M.2
  • 65
    • 80051670315 scopus 로고    scopus 로고
    • Parameter-insensitive kernel in extreme learning for non-linear support vector regression
    • Frenay B., Verleysen M. Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing 2011, 74(16):2526-2531.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2526-2531
    • Frenay, B.1    Verleysen, M.2
  • 66
    • 84863876822 scopus 로고    scopus 로고
    • A comparative analysis of support vector machines and extreme learning machines
    • Liu X., Gao C., Lia P. A comparative analysis of support vector machines and extreme learning machines. Neural Netw. 2012, 33:58-66.
    • (2012) Neural Netw. , vol.33 , pp. 58-66
    • Liu, X.1    Gao, C.2    Lia, P.3
  • 67
    • 84891808342 scopus 로고    scopus 로고
    • (Online; accessed February 2015).
    • G.B. Huang, Extreme Learning Machine, URL , 2015. (Online; accessed February 2015). http://www.ntu.edu.sg/home/egbhuang/elm_kernel.html.
    • (2015) Extreme Learning Machine
    • Huang, G.B.1
  • 68
    • 34249073096 scopus 로고    scopus 로고
    • Controlling the parallel layer perceptron complexity using a multiobjective learning algorithm
    • Vieira D.A.G., Vasconcelos J.A., Caminhas W.M. Controlling the parallel layer perceptron complexity using a multiobjective learning algorithm. Neural Comput. Appl. 2007, 16:317-325.
    • (2007) Neural Comput. Appl. , vol.16 , pp. 317-325
    • Vieira, D.A.G.1    Vasconcelos, J.A.2    Caminhas, W.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.