-
1
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2(4):303-314.
-
(1989)
Math. Control Signals Syst.
, vol.2
, Issue.4
, pp. 303-314
-
-
Cybenko, G.1
-
2
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Netw. 1989, 2(3):183-192.
-
(1989)
Neural Netw.
, vol.2
, Issue.3
, pp. 183-192
-
-
Funahashi, K.1
-
3
-
-
0031673055
-
Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
-
Huang G.B., Babri H.A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw. 1998, 9(1):224-229.
-
(1998)
IEEE Trans. Neural Netw.
, vol.9
, Issue.1
, pp. 224-229
-
-
Huang, G.B.1
Babri, H.A.2
-
5
-
-
10944272650
-
Extreme learning machine: a new learning scheme of feedforward neural networks
-
G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Neural Networks, 2004. 2004 IEEE International Joint Conference on Proceedings, vol. 2. 2004, pp. 985-990.
-
(2004)
Neural Networks, 2004. 2004 IEEE International Joint Conference on Proceedings
, vol.2
, pp. 985-990
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
6
-
-
33745903481
-
Extreme learning machine. theory and applications
-
Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine. theory and applications. Neurocomputing 2006, 70(1-3):489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
7
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
Huang G.B., Zhou H., Ding X., Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybernet. Part B 2012, 42(2):513-529.
-
(2012)
IEEE Trans. Syst. Man Cybernet. Part B
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
8
-
-
84865706274
-
Regularized extreme learning machine for regression problems
-
Martínez-Martínez J.M., Escandell-Montero P., Soria-Olivas E., Martín-Guerrero J.D., Magdalena-Benedito R., Gómez-Sanchis J. Regularized extreme learning machine for regression problems. Neurocomputing 2011, 74(17):3716-3721.
-
(2011)
Neurocomputing
, vol.74
, Issue.17
, pp. 3716-3721
-
-
Martínez-Martínez, J.M.1
Escandell-Montero, P.2
Soria-Olivas, E.3
Martín-Guerrero, J.D.4
Magdalena-Benedito, R.5
Gómez-Sanchis, J.6
-
9
-
-
84922032837
-
Multi-dimensional extreme learning machine
-
Mao W., Zhao S., Mu X., Wang H. Multi-dimensional extreme learning machine. Neurocomputing 2015, 149:160-170.
-
(2015)
Neurocomputing
, vol.149
, pp. 160-170
-
-
Mao, W.1
Zhao, S.2
Mu, X.3
Wang, H.4
-
10
-
-
73949154686
-
OP-ELM. optimally pruned extreme learning machine
-
Miche Y., Sorjamaa A., Bas P., Simula O., Jutten C., Lendasse A. OP-ELM. optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 2010, 21:158-162.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
11
-
-
84867839878
-
Universal approximation of extreme learning machine with adaptive growth of hidden nodes
-
Zhang R., Lan Y., Huang G.B., Xu Z.B. Universal approximation of extreme learning machine with adaptive growth of hidden nodes. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23(2):365-371.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.2
, pp. 365-371
-
-
Zhang, R.1
Lan, Y.2
Huang, G.B.3
Xu, Z.B.4
-
12
-
-
84879753900
-
A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation
-
Vuković N., Miljković Z. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation. Neural Netw. 2013, 46:210-226.
-
(2013)
Neural Netw.
, vol.46
, pp. 210-226
-
-
Vuković, N.1
Miljković, Z.2
-
13
-
-
84890844620
-
Long-term time series prediction using OP-ELM
-
Grigorievskiy A., Miche Y., Ventelä A.M., Séverin E., Lendasse A. Long-term time series prediction using OP-ELM. Neural Netw. 2014, 51:50-56.
-
(2014)
Neural Netw.
, vol.51
, pp. 50-56
-
-
Grigorievskiy, A.1
Miche, Y.2
Ventelä, A.M.3
Séverin, E.4
Lendasse, A.5
-
14
-
-
84870826072
-
A application of OP-ELM in the remote sensing images recognition
-
W. Changji, W. Zenghui, S. Hengqiang, Z. Cuijuan, A application of OP-ELM in the remote sensing images recognition, in: World Automation Congress, 2012, pp. 1-4.
-
(2012)
World Automation Congress
, pp. 1-4
-
-
Changji, W.1
Zenghui, W.2
Hengqiang, S.3
Cuijuan, Z.4
-
15
-
-
84890110727
-
Dynamic extreme learning machine and its approximation capability
-
Zhang R., Lan Y., Huang G.B., Xu Z.B., Soh Y.C. Dynamic extreme learning machine and its approximation capability. IEEE Trans. Cybern. 2013, 2168-2267.
-
(2013)
IEEE Trans. Cybern.
, pp. 2168-2267
-
-
Zhang, R.1
Lan, Y.2
Huang, G.B.3
Xu, Z.B.4
Soh, Y.C.5
-
16
-
-
84907219786
-
Sparse extreme learning machine for classification
-
Bai Z., Huang G.B., Wang D., Wang H., Westover M. Sparse extreme learning machine for classification. IEEE Trans. Cybern. 2014, 44(10):1858-1870.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.10
, pp. 1858-1870
-
-
Bai, Z.1
Huang, G.B.2
Wang, D.3
Wang, H.4
Westover, M.5
-
17
-
-
84870236270
-
Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity
-
Advances in Extreme Learning Machines (ELM 2011)
-
Neumann K., Steil J.J. Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity. Neurocomputing 2013, 102:23-30. Advances in Extreme Learning Machines (ELM 2011).
-
(2013)
Neurocomputing
, vol.102
, pp. 23-30
-
-
Neumann, K.1
Steil, J.J.2
-
18
-
-
84922032836
-
Binary/ternary extreme learning machines
-
van Heeswijk M., Miche Y. Binary/ternary extreme learning machines. Neurocomputing 2015, 149:187-197.
-
(2015)
Neurocomputing
, vol.149
, pp. 187-197
-
-
van Heeswijk, M.1
Miche, Y.2
-
19
-
-
80052015366
-
An evolutionary extreme learning machine based on group search optimization
-
D. Silva, L. Pacifico, T. Ludermir, An evolutionary extreme learning machine based on group search optimization, in: 2011 IEEE Congress on Evolutionary Computation (CEC), 2011, pp. 574-580.
-
(2011)
2011 IEEE Congress on Evolutionary Computation (CEC)
, pp. 574-580
-
-
Silva, D.1
Pacifico, L.2
Ludermir, T.3
-
20
-
-
84878507977
-
An improved evolutionary extreme learning machine based on particle swarm optimization
-
Han F., Yao H.F., Ling Q.H. An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 2013, 116:87-93.
-
(2013)
Neurocomputing
, vol.116
, pp. 87-93
-
-
Han, F.1
Yao, H.F.2
Ling, Q.H.3
-
21
-
-
84893523385
-
Evolutionary extreme learning machine based on particle swarm optimization and clustering strategies
-
L. Pacifico, T. Ludermir, Evolutionary extreme learning machine based on particle swarm optimization and clustering strategies, in: The 2013 International Joint Conference on Neural Networks, 2013, pp. 2161-4393.
-
(2013)
The 2013 International Joint Conference on Neural Networks
, pp. 2161-4393
-
-
Pacifico, L.1
Ludermir, T.2
-
22
-
-
84922018056
-
LARSEN-ELM. Selective ensemble of extreme learning machines using LARS for blended data
-
Han B., He B., Nian R., Ma M., Zhang S., Li M., Lendasse A. LARSEN-ELM. Selective ensemble of extreme learning machines using LARS for blended data. Neurocomputing 2015, 149:285-294.
-
(2015)
Neurocomputing
, vol.149
, pp. 285-294
-
-
Han, B.1
He, B.2
Nian, R.3
Ma, M.4
Zhang, S.5
Li, M.6
Lendasse, A.7
-
23
-
-
84894082731
-
Differential evolution extreme learning machine for the classification of hyperspectral images
-
Bazi Y., Alajlan N., Melgani F., AlHichri H., Malek S., Yager R. Differential evolution extreme learning machine for the classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2014, 11(6):1066-1070.
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.6
, pp. 1066-1070
-
-
Bazi, Y.1
Alajlan, N.2
Melgani, F.3
AlHichri, H.4
Malek, S.5
Yager, R.6
-
25
-
-
84906938183
-
Online sequential extreme learning machine with kernels for nonstationary time series prediction
-
Wang X., Han M. Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 2014, 145:90-97.
-
(2014)
Neurocomputing
, vol.145
, pp. 90-97
-
-
Wang, X.1
Han, M.2
-
26
-
-
84919934813
-
Optimization-based extreme learning machine with multi-kernel learning approach for classification
-
L.l. Cao, W.b. Huang, F.c. Sun, Optimization-based extreme learning machine with multi-kernel learning approach for classification, in: 22nd International Conference on Pattern Recognition, 2014, pp. 3564-3569.
-
(2014)
22nd International Conference on Pattern Recognition
, pp. 3564-3569
-
-
Cao, L.L.1
Huang, W.B.2
Sun, F.C.3
-
27
-
-
84939797937
-
Online sequential extreme learning machine with kernels
-
S. Scardapane, D. Comminiello, M. Scarpiniti, A. Uncini, Online sequential extreme learning machine with kernels, IEEE Trans. Neural Netw. Learn. Syst. 99 (2014) 1.
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.99
, pp. 1
-
-
Scardapane, S.1
Comminiello, D.2
Scarpiniti, M.3
Uncini, A.4
-
28
-
-
84922015329
-
Multiple kernel extreme learning machine
-
Liu X., Wang L., Huang G.b., Zhang J. Multiple kernel extreme learning machine. Neurocomputing 2015, 149:253-264.
-
(2015)
Neurocomputing
, vol.149
, pp. 253-264
-
-
Liu, X.1
Wang, L.2
Huang, G.3
Zhang, J.4
-
29
-
-
84877768115
-
Fuzzy extreme learning machine for classification
-
Zhang W., Ji H. Fuzzy extreme learning machine for classification. Electron. Lett. 2013, 49(7):448-450.
-
(2013)
Electron. Lett.
, vol.49
, Issue.7
, pp. 448-450
-
-
Zhang, W.1
Ji, H.2
-
30
-
-
84931576324
-
A fast learning algorithm for multi-layer extreme learning machine
-
J. Tang, C. Deng, G.B. Huang, J. Hou, A fast learning algorithm for multi-layer extreme learning machine, in: IEEE International Conference on Image Processing, 2014, pp. 175-178.
-
(2014)
IEEE International Conference on Image Processing
, pp. 175-178
-
-
Tang, J.1
Deng, C.2
Huang, G.B.3
Hou, J.4
-
31
-
-
84919642556
-
Is extreme learning machine feasible? a theoretical assessment (Part I)
-
Liu X., Lin S., Fang J., Xu Z. Is extreme learning machine feasible? a theoretical assessment (Part I). IEEE Trans. Neural Netw. Learn. Syst. 2014, 26(1):7-20.
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, Issue.1
, pp. 7-20
-
-
Liu, X.1
Lin, S.2
Fang, J.3
Xu, Z.4
-
32
-
-
84919660197
-
Is extreme learning machine feasible? a theoretical assessment (Part II)
-
Lin S., Liu X., Fang J., Xu Z. Is extreme learning machine feasible? a theoretical assessment (Part II). IEEE Trans. Neural Netw. Learn. Syst. 2014, 26(1):21-34.
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, Issue.1
, pp. 21-34
-
-
Lin, S.1
Liu, X.2
Fang, J.3
Xu, Z.4
-
33
-
-
84867638482
-
Extreme Learning Machine based fast object recognition
-
J. Xu, H. Zhou, G.B. Huang, Extreme Learning Machine based fast object recognition, in: International Conference on Information Fusion, 2012, pp. 1490-1496.
-
(2012)
International Conference on Information Fusion
, pp. 1490-1496
-
-
Xu, J.1
Zhou, H.2
Huang, G.B.3
-
34
-
-
84892422149
-
An extreme learning machine-based pedestrian detection method
-
K. Yang, E. Du, E. Delp, P. Jiang, F. Jiang, Y. Chen, R. Sherony, H. Takahashi, An extreme learning machine-based pedestrian detection method, in: Intelligent Vehicles Symposium, 2013, pp. 1404-1409.
-
(2013)
Intelligent Vehicles Symposium
, pp. 1404-1409
-
-
Yang, K.1
Du, E.2
Delp, E.3
Jiang, P.4
Jiang, F.5
Chen, Y.6
Sherony, R.7
Takahashi, H.8
-
35
-
-
84899896987
-
Ensemble extreme learning machines for hyperspectral image classification
-
Samat A., Du P., Liu S., Li J., Cheng L. Ensemble extreme learning machines for hyperspectral image classification. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 2014, 7(4):1060-1069.
-
(2014)
IEEE J. Select. Top. Appl. Earth Obs. Remote Sens.
, vol.7
, Issue.4
, pp. 1060-1069
-
-
Samat, A.1
Du, P.2
Liu, S.3
Li, J.4
Cheng, L.5
-
36
-
-
84907436729
-
Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images
-
Bencherif M., Bazi Y., Guessoum A., Alajlan N., Melgani F., AlHichri H. Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images. IEEE Geosci. Remote Sens. Lett. 2014, 12(3):527-531.
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, Issue.3
, pp. 527-531
-
-
Bencherif, M.1
Bazi, Y.2
Guessoum, A.3
Alajlan, N.4
Melgani, F.5
AlHichri, H.6
-
37
-
-
84872397124
-
Credit risk evaluation with extreme learning machine
-
H. Zhou, Y. Lan, Y.C. Soh, G.B. Huang, R. Zhang, Credit risk evaluation with extreme learning machine, in: IEEE International Conference on Systems, Man, and Cybernetics, 2012, pp. 1064-1069.
-
(2012)
IEEE International Conference on Systems, Man, and Cybernetics
, pp. 1064-1069
-
-
Zhou, H.1
Lan, Y.2
Soh, Y.C.3
Huang, G.B.4
Zhang, R.5
-
38
-
-
84882799564
-
Hypoglycemia prediction using extreme learning machine (ELM) and regularized ELM
-
X. Mo, Y. Wang, X. Wu, Hypoglycemia prediction using extreme learning machine (ELM) and regularized ELM, in: Control and Decision Conference, 2013, pp. 4405-4409.
-
(2013)
Control and Decision Conference
, pp. 4405-4409
-
-
Mo, X.1
Wang, Y.2
Wu, X.3
-
39
-
-
84922020238
-
Parallel online sequential extreme learning machine based on MapReduce
-
Wang B., Huang S., Qiu J., Liu Y., Wang G. Parallel online sequential extreme learning machine based on MapReduce. Neurocomputing 2015, 149:224-232.
-
(2015)
Neurocomputing
, vol.149
, pp. 224-232
-
-
Wang, B.1
Huang, S.2
Qiu, J.3
Liu, Y.4
Wang, G.5
-
40
-
-
79952188498
-
BELM. Bayesian extreme learning machine
-
Soria-Olivas E., Gomez-Sanchis J., Jarman I., Vila-Frances J., Martinez M., Magdalena J., Serrano A. BELM. Bayesian extreme learning machine. IEEE Trans. Neural Netw. 2011, 22:505-509.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, pp. 505-509
-
-
Soria-Olivas, E.1
Gomez-Sanchis, J.2
Jarman, I.3
Vila-Frances, J.4
Martinez, M.5
Magdalena, J.6
Serrano, A.7
-
41
-
-
84896834052
-
Extreme learning machine for ranking. generalization analysis and applications
-
Chen H., Peng J., Zhou Y., Lib L., Pana Z. Extreme learning machine for ranking. generalization analysis and applications. Neural Netw. 2014, 53:119-126.
-
(2014)
Neural Netw.
, vol.53
, pp. 119-126
-
-
Chen, H.1
Peng, J.2
Zhou, Y.3
Lib, L.4
Pana, Z.5
-
42
-
-
84908682236
-
Trends in extreme learning machines. a review
-
Huang G., Huang G.B., Song S., You K. Trends in extreme learning machines. a review. Neural Netw. 2015, 61:32-48.
-
(2015)
Neural Netw.
, vol.61
, pp. 32-48
-
-
Huang, G.1
Huang, G.B.2
Song, S.3
You, K.4
-
43
-
-
49649091536
-
The Q-norm complexity measure and the minimum gradient method. a novel approach to the machine learning structural risk minimization problem
-
Vieira D.A.G., Takahashi R.H.C., Palade V., Vasconcelos J.A., Caminhas W.M. The Q-norm complexity measure and the minimum gradient method. a novel approach to the machine learning structural risk minimization problem. IEEE Trans. Neural Netw. 2008, 19(8):1415-1430.
-
(2008)
IEEE Trans. Neural Netw.
, vol.19
, Issue.8
, pp. 1415-1430
-
-
Vieira, D.A.G.1
Takahashi, R.H.C.2
Palade, V.3
Vasconcelos, J.A.4
Caminhas, W.M.5
-
44
-
-
0032028728
-
The sample complexity of pattern classification with neural networks. the size of the weights is more important than the size of the network
-
Bartlett P.L. The sample complexity of pattern classification with neural networks. the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theor. 2006, 44(2):525-536.
-
(2006)
IEEE Trans. Inf. Theor.
, vol.44
, Issue.2
, pp. 525-536
-
-
Bartlett, P.L.1
-
45
-
-
0040864988
-
Principles of structural risk minimization for learning theory
-
Vapnik V.N. Principles of structural risk minimization for learning theory. Adv. Neural Inf. Process. Syst. 2006, 4:831-838.
-
(2006)
Adv. Neural Inf. Process. Syst.
, vol.4
, pp. 831-838
-
-
Vapnik, V.N.1
-
47
-
-
0004003832
-
-
The MIT Press, Cambridge, Massachusetts, London, England
-
Kasabov N. Foundations of Neural Networks Fuzzy Systems, and Knowledge Engineering. A Bradford Book 1996, The MIT Press, Cambridge, Massachusetts, London, England, ISBN 9780262112123.
-
(1996)
Foundations of Neural Networks Fuzzy Systems, and Knowledge Engineering. A Bradford Book
-
-
Kasabov, N.1
-
49
-
-
84883831186
-
Eye-gaze driven surgical workflow segmentation
-
A. James, D.A.G. Vieira, L. Benny, D. Ara, G.Z. Yang, Eye-gaze driven surgical workflow segmentation, in: Lecture Notes in Computer Science, vol. 4792, 2007, pp. 110-117.
-
(2007)
Lecture Notes in Computer Science
, vol.4792
, pp. 110-117
-
-
James, A.1
Vieira, D.A.G.2
Benny, L.3
Ara, D.4
Yang, G.Z.5
-
50
-
-
44049086696
-
Characterizing inclusions in a non-homogenous GPR problem by Neural Networks
-
Travassos L., Vieira D.A.G., Ida N., Vollaire C., Nicolas A. Characterizing inclusions in a non-homogenous GPR problem by Neural Networks. IEEE Trans. Mag. 2008, 44:1630-1633.
-
(2008)
IEEE Trans. Mag.
, vol.44
, pp. 1630-1633
-
-
Travassos, L.1
Vieira, D.A.G.2
Ida, N.3
Vollaire, C.4
Nicolas, A.5
-
51
-
-
70749161302
-
In the use of parametric and non parametric algorithms for the non destructive evaluation of concrete structures
-
N.I.,A.N.
-
Travassos L., Vieira D.A.G., N.I., A.N. In the use of parametric and non parametric algorithms for the non destructive evaluation of concrete structures. Res. Nondestr. Eval. 2009, 20:71-93.
-
(2009)
Res. Nondestr. Eval.
, vol.20
, pp. 71-93
-
-
Travassos, L.1
Vieira, D.A.G.2
-
52
-
-
61449223713
-
Noise reduction in a non-homogenous ground penetrating radar problem by multiobjective neural networks
-
Travassos X., Nicolas A., Vieira D., Palade V. Noise reduction in a non-homogenous ground penetrating radar problem by multiobjective neural networks. IEEE Trans. Mag. 2009, 45:1454-1457.
-
(2009)
IEEE Trans. Mag.
, vol.45
, pp. 1454-1457
-
-
Travassos, X.1
Nicolas, A.2
Vieira, D.3
Palade, V.4
-
53
-
-
84872133514
-
A review of soft techniques for electromagnetic assessment of concrete condition
-
Queiroz F.A.A., Vieira D.A.G., Travassos X.L., Pantoja M. A review of soft techniques for electromagnetic assessment of concrete condition. Math. Prob. Eng. (Online) 2012, 2012:1-20.
-
(2012)
Math. Prob. Eng. (Online)
, vol.2012
, pp. 1-20
-
-
Queiroz, F.A.A.1
Vieira, D.A.G.2
Travassos, X.L.3
Pantoja, M.4
-
54
-
-
67349112381
-
Signal denoising in engineering problems through the minimum gradient method
-
Vieira D., Travassos L., Saldanha R.R., Palade V. Signal denoising in engineering problems through the minimum gradient method. Neurocomputing (Amsterdam) 2009, 72:2270-2275.
-
(2009)
Neurocomputing (Amsterdam)
, vol.72
, pp. 2270-2275
-
-
Vieira, D.1
Travassos, L.2
Saldanha, R.R.3
Palade, V.4
-
55
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2(5):359-366.
-
(1989)
Neural Netw.
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
57
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
59
-
-
67650463106
-
Regularized extreme learning machine
-
IEEE Symposium on CIDM '09
-
W. Deng, Q. Zheng, L. Chen, Regularized extreme learning machine, in: Computational Intelligence and Data Mining, 2009. IEEE Symposium on CIDM '09, 2009, pp. 389-395.
-
(2009)
Computational Intelligence and Data Mining, 2009
, pp. 389-395
-
-
Deng, W.1
Zheng, Q.2
Chen, L.3
-
60
-
-
84924582748
-
Sentic patterns. dependency-based rules for concept-level sentiment analysis
-
Poria S., Cambria E., Winterstein G., Huang G.B. Sentic patterns. dependency-based rules for concept-level sentiment analysis. Knowl. Based Syst. 2014, 69:45-63.
-
(2014)
Knowl. Based Syst.
, vol.69
, pp. 45-63
-
-
Poria, S.1
Cambria, E.2
Winterstein, G.3
Huang, G.B.4
-
61
-
-
84901037072
-
Hybrid soft computing schemes for the prediction of import demand of crude oil in Taiwan
-
Shao Y.E., Lu C.J., Hou C.D. Hybrid soft computing schemes for the prediction of import demand of crude oil in Taiwan. Math. Prob. Eng. 2014, 2014:11.
-
(2014)
Math. Prob. Eng.
, vol.2014
, pp. 11
-
-
Shao, Y.E.1
Lu, C.J.2
Hou, C.D.3
-
62
-
-
84911059278
-
Facial expression recognition based on discriminant neighborhood preserving nonnegative tensor factorization and ELM
-
An G., Liu S., Jin Y., Ruan Q., Lu S. Facial expression recognition based on discriminant neighborhood preserving nonnegative tensor factorization and ELM. Math. Prob. Eng. 2014, 2014:10.
-
(2014)
Math. Prob. Eng.
, vol.2014
, pp. 10
-
-
An, G.1
Liu, S.2
Jin, Y.3
Ruan, Q.4
Lu, S.5
-
63
-
-
84969228568
-
An ELM-based model for affective analogical reasoning
-
Cambria E., Gastaldo P., Bisio F., Zunino R. An ELM-based model for affective analogical reasoning. Neurocomputing 2015, 149:443-455.
-
(2015)
Neurocomputing
, vol.149
, pp. 443-455
-
-
Cambria, E.1
Gastaldo, P.2
Bisio, F.3
Zunino, R.4
-
64
-
-
84923377302
-
Improved extreme learning machine for multivariate time series online sequential prediction
-
Wang X., Han M. Improved extreme learning machine for multivariate time series online sequential prediction. Eng. Appl. Artif. Intell. 2015, 40:28-36.
-
(2015)
Eng. Appl. Artif. Intell.
, vol.40
, pp. 28-36
-
-
Wang, X.1
Han, M.2
-
65
-
-
80051670315
-
Parameter-insensitive kernel in extreme learning for non-linear support vector regression
-
Frenay B., Verleysen M. Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing 2011, 74(16):2526-2531.
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2526-2531
-
-
Frenay, B.1
Verleysen, M.2
-
66
-
-
84863876822
-
A comparative analysis of support vector machines and extreme learning machines
-
Liu X., Gao C., Lia P. A comparative analysis of support vector machines and extreme learning machines. Neural Netw. 2012, 33:58-66.
-
(2012)
Neural Netw.
, vol.33
, pp. 58-66
-
-
Liu, X.1
Gao, C.2
Lia, P.3
-
67
-
-
84891808342
-
-
(Online; accessed February 2015).
-
G.B. Huang, Extreme Learning Machine, URL , 2015. (Online; accessed February 2015). http://www.ntu.edu.sg/home/egbhuang/elm_kernel.html.
-
(2015)
Extreme Learning Machine
-
-
Huang, G.B.1
-
68
-
-
34249073096
-
Controlling the parallel layer perceptron complexity using a multiobjective learning algorithm
-
Vieira D.A.G., Vasconcelos J.A., Caminhas W.M. Controlling the parallel layer perceptron complexity using a multiobjective learning algorithm. Neural Comput. Appl. 2007, 16:317-325.
-
(2007)
Neural Comput. Appl.
, vol.16
, pp. 317-325
-
-
Vieira, D.A.G.1
Vasconcelos, J.A.2
Caminhas, W.M.3
|