메뉴 건너뛰기




Volumn 47, Issue 5, 2015, Pages 747-758

Natural number bias in operations with missing numbers

Author keywords

Arithmetic operations; Intuitions; Multiplication makes bigger; Natural number bias; Number reasoning

Indexed keywords


EID: 84940042068     PISSN: 18639690     EISSN: 18639704     Source Type: Journal    
DOI: 10.1007/s11858-015-0675-6     Document Type: Article
Times cited : (24)

References (41)
  • 1
    • 84940050719 scopus 로고    scopus 로고
    • A warning intervention improves students’ ability to overcome intuitive interference
    • Babai, R., Shalev, E., & Stavy, R. (2015). A warning intervention improves students’ ability to overcome intuitive interference. ZDM Mathematics Education, 47(5) (this issue).
    • (2015) ZDM Mathematics Education , vol.47 , Issue.5
    • Babai, R.1    Shalev, E.2    Stavy, R.3
  • 2
    • 0000125086 scopus 로고
    • Choice of operation in verbal problems with decimal numbers
    • Bell, A., Swan, M., & Taylor, G. (1981). Choice of operation in verbal problems with decimal numbers. Educational Studies in Mathematics,12, 399–420. doi:10.1007/BF00308139.
    • (1981) Educational Studies in Mathematics , vol.12 , pp. 399-420
    • Bell, A.1    Swan, M.2    Taylor, G.3
  • 3
    • 84940098761 scopus 로고    scopus 로고
    • Helping students remedy the phenomenal sign bias: the case of a refutational lecture
    • Prachalias C, (ed), Samos, Greece
    • Christou, K. P. (2012). Helping students remedy the phenomenal sign bias: the case of a refutational lecture. In C. Prachalias (Ed.), Proceedings of the 8th International Conference on Education (pp. 643–648). Greece: Samos.
    • (2012) Proceedings of the 8th International Conference on Education , pp. 643-648
    • Christou, K.P.1
  • 5
    • 41349101642 scopus 로고    scopus 로고
    • How students interpret literal symbols in algebra: a conceptual change approach
    • Bara BG, Barsalou L, Bucciarelli M, (eds), Stresa, Italy
    • Christou, K. P., & Vosniadou, S. (2005). How students interpret literal symbols in algebra: a conceptual change approach. In B. G. Bara, L. Barsalou, & M. Bucciarelli (Eds.), XXVII Annual Conference of the Cognitive Science Society (pp. 453–458). Italy: Stresa.
    • (2005) XXVII Annual Conference of the Cognitive Science Society , pp. 453-458
    • Christou, K.P.1    Vosniadou, S.2
  • 6
    • 84855981462 scopus 로고    scopus 로고
    • What kinds of numbers do students assign to literal symbols? Aspects of the transition from arithmetic to algebra
    • Christou, K. P., & Vosniadou, S. (2012). What kinds of numbers do students assign to literal symbols? Aspects of the transition from arithmetic to algebra. Mathematical Thinking and Learning,14(1), 1–27. doi:10.1080/10986065.2012.625074.
    • (2012) Mathematical Thinking and Learning , vol.14 , Issue.1 , pp. 1-27
    • Christou, K.P.1    Vosniadou, S.2
  • 8
    • 0001460599 scopus 로고
    • Influence of the semantic structure of word problems on second graders’ eye movements
    • De Corte, E., Verschaffel, L., & Pauwels, A. (1990). Influence of the semantic structure of word problems on second graders’ eye movements. Journal of Educational Psychology,82(2), 359–365. doi:10.1037/0022-0663.82.2.359.
    • (1990) Journal of Educational Psychology , vol.82 , Issue.2 , pp. 359-365
    • De Corte, E.1    Verschaffel, L.2    Pauwels, A.3
  • 9
    • 84939891278 scopus 로고    scopus 로고
    • The representation of fraction magnitudes and the whole number bias reconsidered
    • DeWolf, M., & Vosniadou, S. (2014). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, Advance online publication.,. doi:10.1016/j.learninstruc.2014.07.002.
    • (2014) Learning and Instruction, Advance online publication.
    • DeWolf, M.1    Vosniadou, S.2
  • 10
    • 38249018957 scopus 로고
    • Intuition and information processing in mathematical activity
    • Fischbein, E. (1990). Intuition and information processing in mathematical activity. International Journal of Educational Research,14(1), 31–50. doi:10.1016/0883-0355(90)90015-Z.
    • (1990) International Journal of Educational Research , vol.14 , Issue.1 , pp. 31-50
    • Fischbein, E.1
  • 12
    • 0002694829 scopus 로고    scopus 로고
    • The epigenesis of mathematical thinking
    • Gelman, R. (2000). The epigenesis of mathematical thinking. Journal of Applied Developmental Psychology,21, 27–37. doi:10.1016/S0193-3973(99)00048-9.
    • (2000) Journal of Applied Developmental Psychology , vol.21 , pp. 27-37
    • Gelman, R.1
  • 13
    • 0002473869 scopus 로고
    • Preservice teachers’ misconceptions in solving verbal problems in multiplication and division
    • Graeber, A. O., Tirosh, D., & Glover, R. (1989). Preservice teachers’ misconceptions in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education,20, 95–102. doi:10.2307/749100.
    • (1989) Journal for Research in Mathematics Education , vol.20 , pp. 95-102
    • Graeber, A.O.1    Tirosh, D.2    Glover, R.3
  • 14
    • 43349093919 scopus 로고    scopus 로고
    • Reversing education majors’ arithmetic misconceptions with short-term instruction using manipulatives
    • Green, M., Piel, J. A., & Flowers, C. (2008). Reversing education majors’ arithmetic misconceptions with short-term instruction using manipulatives. The Journal of Educational Research,101(4), 234–242. doi:10.3200/JOER.101.4.234-242.
    • (2008) The Journal of Educational Research , vol.101 , Issue.4 , pp. 234-242
    • Green, M.1    Piel, J.A.2    Flowers, C.3
  • 15
    • 0010070825 scopus 로고
    • Nonconservation of multiplication and division involving decimals
    • Greer, B. (1987). Nonconservation of multiplication and division involving decimals. Journal for Research in Mathematics Education,18(1), 37–45. doi:10.2307/749535.
    • (1987) Journal for Research in Mathematics Education , vol.18 , Issue.1 , pp. 37-45
    • Greer, B.1
  • 16
    • 0011397589 scopus 로고
    • Conceptual obstacles to the development of the concepts of multiplication and division
    • Mandl H, Corte E, Bennet SN, Friedrich HF, (eds), 2, Pergamon, Oxford
    • Greer, B. (1989). Conceptual obstacles to the development of the concepts of multiplication and division. In H. Mandl, E. De Corte, S. N. Bennet, & H. F. Friedrich (Eds.), Learning and instruction: European research in an international context (Vol. 2, pp. 461–476). Oxford: Pergamon.
    • (1989) Learning and instruction: European research in an international context , pp. 461-476
    • Greer, B.1
  • 18
    • 0011498498 scopus 로고
    • The impact of number type on the solution of multiplication and division problems: further considerations
    • Harel G, Confrey J, (eds), SUNY Press, Albany
    • Harel, G., Behr, M., Post, T., & Lesh, R. (1994). The impact of number type on the solution of multiplication and division problems: further considerations. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 365–388). Albany: SUNY Press.
    • (1994) The development of multiplicative reasoning in the learning of mathematics , pp. 365-388
    • Harel, G.1    Behr, M.2    Post, T.3    Lesh, R.4
  • 21
    • 0000527765 scopus 로고    scopus 로고
    • Early understandings of number: paths or barriers to the construction of new understandings?
    • Hartnett, P. M., & Gelman, R. (1998). Early understandings of number: paths or barriers to the construction of new understandings? Learning and Instruction,8(4), 341–374. doi:10.1016/S0959-4752(97)00026-1.
    • (1998) Learning and Instruction , vol.8 , Issue.4 , pp. 341-374
    • Hartnett, P.M.1    Gelman, R.2
  • 22
    • 1842817942 scopus 로고    scopus 로고
    • Refutational texts and the change process
    • Hynd, C. R. (2001). Refutational texts and the change process. International Journal of Educational Research,35, 699–714. doi:10.1016/S0883-0355(02)00010-1.
    • (2001) International Journal of Educational Research , vol.35 , pp. 699-714
    • Hynd, C.R.1
  • 24
    • 13844256104 scopus 로고    scopus 로고
    • Conceptual change in mathematics: understanding the real numbers
    • Limon M, Mason L, (eds), Kluwer, Dordrecht
    • Merenluoto, K., & Lehtinen, E. (2002). Conceptual change in mathematics: understanding the real numbers. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 233–258). Dordrecht: Kluwer.
    • (2002) Reconsidering conceptual change: Issues in theory and practice , pp. 233-258
    • Merenluoto, K.1    Lehtinen, E.2
  • 25
    • 84987793354 scopus 로고    scopus 로고
    • Pipes, tubes, and beakers: new approaches to teaching the rational-number system
    • Donovan S, Bransford JD, (eds), National Academy Press, Washington, DC
    • Moss, J. (2005). Pipes, tubes, and beakers: new approaches to teaching the rational-number system. In S. Donovan & J. D. Bransford (Eds.), How students learn: History, mathematics, and science in the classroom (pp. 309–349). Washington, DC: National Academy Press.
    • (2005) How students learn: History, mathematics, and science in the classroom , pp. 309-349
    • Moss, J.1
  • 27
    • 15944425784 scopus 로고    scopus 로고
    • Teaching and learning fraction and rational numbers: the origins and implications of whole number bias
    • Ni, Y. J., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: the origins and implications of whole number bias. Educational Psychologist,40(1), 27–52. doi:10.1207/s15326985ep4001_3.
    • (2005) Educational Psychologist , vol.40 , Issue.1 , pp. 27-52
    • Ni, Y.J.1    Zhou, Y.-D.2
  • 28
    • 84879747887 scopus 로고    scopus 로고
    • The natural number bias and magnitude representation in fraction comparison by expert mathematicians
    • Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction,28, 64–72. doi:10.1016/j.learninstruc.2013.05.003.
    • (2013) Learning and Instruction , vol.28 , pp. 64-72
    • Obersteiner, A.1    Van Dooren, W.2    Van Hoof, J.3    Verschaffel, L.4
  • 30
    • 57649136757 scopus 로고    scopus 로고
    • From numerical concepts to concepts of number
    • Rips, L. J., Blomfield, A., & Asmuth, J. (2008). From numerical concepts to concepts of number. Behavioral and Brain Sciences,31, 623–642. doi:10.1017/S0140525X08005566.
    • (2008) Behavioral and Brain Sciences , vol.31 , pp. 623-642
    • Rips, L.J.1    Blomfield, A.2    Asmuth, J.3
  • 31
    • 24644465554 scopus 로고    scopus 로고
    • Never getting to zero: elementary school students’understanding of the infinite divisibility of number and matter
    • Smith, C. L., Solomon, G. E. A., & Carey, S. (2005). Never getting to zero: elementary school students’understanding of the infinite divisibility of number and matter. Cognitive Psychology,51, 101–140. doi:10.1016/j.cogpsych.2005.03.001.
    • (2005) Cognitive Psychology , vol.51 , pp. 101-140
    • Smith, C.L.1    Solomon, G.E.A.2    Carey, S.3
  • 33
    • 13844292565 scopus 로고    scopus 로고
    • Students’ understanding of the numerical value of fractions: a conceptual change approach
    • Stafylidou, S., & Vosniadou, S. (2004). Students’ understanding of the numerical value of fractions: a conceptual change approach. Learning and Instruction,14, 503–518. doi:10.1016/j.learninstruc.2004.06.015.
    • (2004) Learning and Instruction , vol.14 , pp. 503-518
    • Stafylidou, S.1    Vosniadou, S.2
  • 34
    • 0035729603 scopus 로고    scopus 로고
    • A new hypothesis concerning children’s fractional knowledge
    • Steffe, L. P. (2002). A new hypothesis concerning children’s fractional knowledge. Journal of Mathematical Behavior,20, 267–307. doi:10.1016/S0732-3123(02)00075-5.
    • (2002) Journal of Mathematical Behavior , vol.20 , pp. 267-307
    • Steffe, L.P.1
  • 35
    • 8644246924 scopus 로고    scopus 로고
    • Fractions and multiplicative reasoning
    • Reston: The National Council of Teachers of Mathematics. In J. Kilpatrick, W. Gary Martin & D. Schifter (Eds.)
    • Thompson, P. W., & Saldanha, L. A. (2003). Fractions and multiplicative reasoning. In J. Kilpatrick, W. Gary Martin & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 95–113). Reston: The National Council of Teachers of Mathematics.
    • (2003) A research companion to principles and standards for school mathematics , pp. 95-113
    • Thompson, P.W.1    Saldanha, L.A.2
  • 36
    • 84863006711 scopus 로고    scopus 로고
    • Insights into children’s intuitions of addition, subtraction, multiplication, and division
    • Cockburn A, Littler G, (eds), Sage, London
    • Tirosh, D., Tsamir, P., & Hershkovitz, S. (2008). Insights into children’s intuitions of addition, subtraction, multiplication, and division. In A. Cockburn & G. Littler (Eds.), Mathematical misconceptions (pp. 54–70). London: Sage.
    • (2008) Mathematical misconceptions , pp. 54-70
    • Tirosh, D.1    Tsamir, P.2    Hershkovitz, S.3
  • 37
    • 84862993778 scopus 로고    scopus 로고
    • Naturally biased? In search for reaction time evidence for a natural number bias in adults
    • Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior,31, 344–355. doi:10.1016/j.jmathb.2012.02.001.
    • (2012) The Journal of Mathematical Behavior , vol.31 , pp. 344-355
    • Vamvakoussi, X.1    Van Dooren, W.2    Verschaffel, L.3
  • 38
    • 84872498745 scopus 로고    scopus 로고
    • Brief report. Educated adults are still affected by intuitions about the effect of arithmetical operations: evidence from a reaction-time study
    • Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2013). Brief report. Educated adults are still affected by intuitions about the effect of arithmetical operations: evidence from a reaction-time study. Educational Studies in Mathematics,82(2), 323–330. doi:10.1007/s10649-012-9432-8.
    • (2013) Educational Studies in Mathematics , vol.82 , Issue.2 , pp. 323-330
    • Vamvakoussi, X.1    Van Dooren, W.2    Verschaffel, L.3
  • 39
    • 77951261035 scopus 로고    scopus 로고
    • How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational numbers and their notation
    • Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational numbers and their notation. Cognition and Instruction,28(2), 181–209.
    • (2010) Cognition and Instruction , vol.28 , Issue.2 , pp. 181-209
    • Vamvakoussi, X.1    Vosniadou, S.2
  • 40
    • 84940032894 scopus 로고    scopus 로고
    • Inhibiting natural knowledge in fourth graders: towards a comprehensive test instrument
    • Van Hoof, J., Janssen, R., Verschaffel, L., & Van Dooren, W. (2015). Inhibiting natural knowledge in fourth graders: towards a comprehensive test instrument. ZDM Mathematics Education, 47(5) (this issue). doi:10.1007/s11858-014-0650-7.
    • (2015) ZDM Mathematics Education , vol.47 , Issue.5
    • Van Hoof, J.1    Janssen, R.2    Verschaffel, L.3    Van Dooren, W.4
  • 41
    • 84898705805 scopus 로고    scopus 로고
    • In search for the natural number bias in secondary school students’ interpretation of the effect of arithmetical operations
    • Van Hoof, J., Vandewalle, J., Verschaffel, L., & Van Dooren, W. (2014). In search for the natural number bias in secondary school students’ interpretation of the effect of arithmetical operations. Learning and Instruction (Advance online publication).,. doi:10.1016/j.learninstruc.2014.03.004.
    • (2014) Learning and Instruction (Advance online publication).
    • Van Hoof, J.1    Vandewalle, J.2    Verschaffel, L.3    Van Dooren, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.