-
1
-
-
84940050719
-
A warning intervention improves students’ ability to overcome intuitive interference
-
Babai, R., Shalev, E., & Stavy, R. (2015). A warning intervention improves students’ ability to overcome intuitive interference. ZDM Mathematics Education, 47(5) (this issue).
-
(2015)
ZDM Mathematics Education
, vol.47
, Issue.5
-
-
Babai, R.1
Shalev, E.2
Stavy, R.3
-
2
-
-
0000125086
-
Choice of operation in verbal problems with decimal numbers
-
Bell, A., Swan, M., & Taylor, G. (1981). Choice of operation in verbal problems with decimal numbers. Educational Studies in Mathematics,12, 399–420. doi:10.1007/BF00308139.
-
(1981)
Educational Studies in Mathematics
, vol.12
, pp. 399-420
-
-
Bell, A.1
Swan, M.2
Taylor, G.3
-
3
-
-
84940098761
-
Helping students remedy the phenomenal sign bias: the case of a refutational lecture
-
Prachalias C, (ed), Samos, Greece
-
Christou, K. P. (2012). Helping students remedy the phenomenal sign bias: the case of a refutational lecture. In C. Prachalias (Ed.), Proceedings of the 8th International Conference on Education (pp. 643–648). Greece: Samos.
-
(2012)
Proceedings of the 8th International Conference on Education
, pp. 643-648
-
-
Christou, K.P.1
-
5
-
-
41349101642
-
How students interpret literal symbols in algebra: a conceptual change approach
-
Bara BG, Barsalou L, Bucciarelli M, (eds), Stresa, Italy
-
Christou, K. P., & Vosniadou, S. (2005). How students interpret literal symbols in algebra: a conceptual change approach. In B. G. Bara, L. Barsalou, & M. Bucciarelli (Eds.), XXVII Annual Conference of the Cognitive Science Society (pp. 453–458). Italy: Stresa.
-
(2005)
XXVII Annual Conference of the Cognitive Science Society
, pp. 453-458
-
-
Christou, K.P.1
Vosniadou, S.2
-
6
-
-
84855981462
-
What kinds of numbers do students assign to literal symbols? Aspects of the transition from arithmetic to algebra
-
Christou, K. P., & Vosniadou, S. (2012). What kinds of numbers do students assign to literal symbols? Aspects of the transition from arithmetic to algebra. Mathematical Thinking and Learning,14(1), 1–27. doi:10.1080/10986065.2012.625074.
-
(2012)
Mathematical Thinking and Learning
, vol.14
, Issue.1
, pp. 1-27
-
-
Christou, K.P.1
Vosniadou, S.2
-
8
-
-
0001460599
-
Influence of the semantic structure of word problems on second graders’ eye movements
-
De Corte, E., Verschaffel, L., & Pauwels, A. (1990). Influence of the semantic structure of word problems on second graders’ eye movements. Journal of Educational Psychology,82(2), 359–365. doi:10.1037/0022-0663.82.2.359.
-
(1990)
Journal of Educational Psychology
, vol.82
, Issue.2
, pp. 359-365
-
-
De Corte, E.1
Verschaffel, L.2
Pauwels, A.3
-
9
-
-
84939891278
-
The representation of fraction magnitudes and the whole number bias reconsidered
-
DeWolf, M., & Vosniadou, S. (2014). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, Advance online publication.,. doi:10.1016/j.learninstruc.2014.07.002.
-
(2014)
Learning and Instruction, Advance online publication.
-
-
DeWolf, M.1
Vosniadou, S.2
-
10
-
-
38249018957
-
Intuition and information processing in mathematical activity
-
Fischbein, E. (1990). Intuition and information processing in mathematical activity. International Journal of Educational Research,14(1), 31–50. doi:10.1016/0883-0355(90)90015-Z.
-
(1990)
International Journal of Educational Research
, vol.14
, Issue.1
, pp. 31-50
-
-
Fischbein, E.1
-
11
-
-
0001230906
-
The role of implicit models in solving problems in multiplication and division
-
Fischbein, E., Deri, M., Nello, M., & Marino, M. (1985). The role of implicit models in solving problems in multiplication and division. Journal of Research in Mathematics Education,16, 3–17. doi:10.2307/748969.
-
(1985)
Journal of Research in Mathematics Education
, vol.16
, pp. 3-17
-
-
Fischbein, E.1
Deri, M.2
Nello, M.3
Marino, M.4
-
12
-
-
0002694829
-
The epigenesis of mathematical thinking
-
Gelman, R. (2000). The epigenesis of mathematical thinking. Journal of Applied Developmental Psychology,21, 27–37. doi:10.1016/S0193-3973(99)00048-9.
-
(2000)
Journal of Applied Developmental Psychology
, vol.21
, pp. 27-37
-
-
Gelman, R.1
-
13
-
-
0002473869
-
Preservice teachers’ misconceptions in solving verbal problems in multiplication and division
-
Graeber, A. O., Tirosh, D., & Glover, R. (1989). Preservice teachers’ misconceptions in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education,20, 95–102. doi:10.2307/749100.
-
(1989)
Journal for Research in Mathematics Education
, vol.20
, pp. 95-102
-
-
Graeber, A.O.1
Tirosh, D.2
Glover, R.3
-
14
-
-
43349093919
-
Reversing education majors’ arithmetic misconceptions with short-term instruction using manipulatives
-
Green, M., Piel, J. A., & Flowers, C. (2008). Reversing education majors’ arithmetic misconceptions with short-term instruction using manipulatives. The Journal of Educational Research,101(4), 234–242. doi:10.3200/JOER.101.4.234-242.
-
(2008)
The Journal of Educational Research
, vol.101
, Issue.4
, pp. 234-242
-
-
Green, M.1
Piel, J.A.2
Flowers, C.3
-
15
-
-
0010070825
-
Nonconservation of multiplication and division involving decimals
-
Greer, B. (1987). Nonconservation of multiplication and division involving decimals. Journal for Research in Mathematics Education,18(1), 37–45. doi:10.2307/749535.
-
(1987)
Journal for Research in Mathematics Education
, vol.18
, Issue.1
, pp. 37-45
-
-
Greer, B.1
-
16
-
-
0011397589
-
Conceptual obstacles to the development of the concepts of multiplication and division
-
Mandl H, Corte E, Bennet SN, Friedrich HF, (eds), 2, Pergamon, Oxford
-
Greer, B. (1989). Conceptual obstacles to the development of the concepts of multiplication and division. In H. Mandl, E. De Corte, S. N. Bennet, & H. F. Friedrich (Eds.), Learning and instruction: European research in an international context (Vol. 2, pp. 461–476). Oxford: Pergamon.
-
(1989)
Learning and instruction: European research in an international context
, pp. 461-476
-
-
Greer, B.1
-
17
-
-
38349101502
-
Levels of students’ understanding on infinity
-
Hannula, M. S., Pehkonen, E., Maijala, H., & Soro, R. (2006). Levels of students’ understanding on infinity. Teaching Mathematics and Computer Science,4(2), 317–337.
-
(2006)
Teaching Mathematics and Computer Science
, vol.4
, Issue.2
, pp. 317-337
-
-
Hannula, M.S.1
Pehkonen, E.2
Maijala, H.3
Soro, R.4
-
18
-
-
0011498498
-
The impact of number type on the solution of multiplication and division problems: further considerations
-
Harel G, Confrey J, (eds), SUNY Press, Albany
-
Harel, G., Behr, M., Post, T., & Lesh, R. (1994). The impact of number type on the solution of multiplication and division problems: further considerations. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 365–388). Albany: SUNY Press.
-
(1994)
The development of multiplicative reasoning in the learning of mathematics
, pp. 365-388
-
-
Harel, G.1
Behr, M.2
Post, T.3
Lesh, R.4
-
21
-
-
0000527765
-
Early understandings of number: paths or barriers to the construction of new understandings?
-
Hartnett, P. M., & Gelman, R. (1998). Early understandings of number: paths or barriers to the construction of new understandings? Learning and Instruction,8(4), 341–374. doi:10.1016/S0959-4752(97)00026-1.
-
(1998)
Learning and Instruction
, vol.8
, Issue.4
, pp. 341-374
-
-
Hartnett, P.M.1
Gelman, R.2
-
22
-
-
1842817942
-
Refutational texts and the change process
-
Hynd, C. R. (2001). Refutational texts and the change process. International Journal of Educational Research,35, 699–714. doi:10.1016/S0883-0355(02)00010-1.
-
(2001)
International Journal of Educational Research
, vol.35
, pp. 699-714
-
-
Hynd, C.R.1
-
23
-
-
36148961648
-
In opposition to inhibition
-
MacLeod, C. M., Dodd, M. D., Sheard, E. D., Wilson, D. E., & Bibi, U. (2003). In opposition to inhibition. Psychology of Learning and Motivation,43, 163–215.
-
(2003)
Psychology of Learning and Motivation
, vol.43
, pp. 163-215
-
-
MacLeod, C.M.1
Dodd, M.D.2
Sheard, E.D.3
Wilson, D.E.4
Bibi, U.5
-
24
-
-
13844256104
-
Conceptual change in mathematics: understanding the real numbers
-
Limon M, Mason L, (eds), Kluwer, Dordrecht
-
Merenluoto, K., & Lehtinen, E. (2002). Conceptual change in mathematics: understanding the real numbers. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 233–258). Dordrecht: Kluwer.
-
(2002)
Reconsidering conceptual change: Issues in theory and practice
, pp. 233-258
-
-
Merenluoto, K.1
Lehtinen, E.2
-
25
-
-
84987793354
-
Pipes, tubes, and beakers: new approaches to teaching the rational-number system
-
Donovan S, Bransford JD, (eds), National Academy Press, Washington, DC
-
Moss, J. (2005). Pipes, tubes, and beakers: new approaches to teaching the rational-number system. In S. Donovan & J. D. Bransford (Eds.), How students learn: History, mathematics, and science in the classroom (pp. 309–349). Washington, DC: National Academy Press.
-
(2005)
How students learn: History, mathematics, and science in the classroom
, pp. 309-349
-
-
Moss, J.1
-
26
-
-
13844257360
-
Shifts in reasoning
-
Nesher, P., & Peled, I. (1986). Shifts in reasoning. Educational Studies in Mathematics,17(1), 67–79. doi:10.1007/bf00302379.
-
(1986)
Educational Studies in Mathematics
, vol.17
, Issue.1
, pp. 67-79
-
-
Nesher, P.1
Peled, I.2
-
27
-
-
15944425784
-
Teaching and learning fraction and rational numbers: the origins and implications of whole number bias
-
Ni, Y. J., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: the origins and implications of whole number bias. Educational Psychologist,40(1), 27–52. doi:10.1207/s15326985ep4001_3.
-
(2005)
Educational Psychologist
, vol.40
, Issue.1
, pp. 27-52
-
-
Ni, Y.J.1
Zhou, Y.-D.2
-
28
-
-
84879747887
-
The natural number bias and magnitude representation in fraction comparison by expert mathematicians
-
Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction,28, 64–72. doi:10.1016/j.learninstruc.2013.05.003.
-
(2013)
Learning and Instruction
, vol.28
, pp. 64-72
-
-
Obersteiner, A.1
Van Dooren, W.2
Van Hoof, J.3
Verschaffel, L.4
-
29
-
-
0001974117
-
Conceptual bases of arithmetic errors: the case of decimal fractions
-
Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). Conceptual bases of arithmetic errors: the case of decimal fractions. Journal for Research in Mathematics Education,20, 8–27. doi:10.2307/749095.
-
(1989)
Journal for Research in Mathematics Education
, vol.20
, pp. 8-27
-
-
Resnick, L.B.1
Nesher, P.2
Leonard, F.3
Magone, M.4
Omanson, S.5
Peled, I.6
-
30
-
-
57649136757
-
From numerical concepts to concepts of number
-
Rips, L. J., Blomfield, A., & Asmuth, J. (2008). From numerical concepts to concepts of number. Behavioral and Brain Sciences,31, 623–642. doi:10.1017/S0140525X08005566.
-
(2008)
Behavioral and Brain Sciences
, vol.31
, pp. 623-642
-
-
Rips, L.J.1
Blomfield, A.2
Asmuth, J.3
-
31
-
-
24644465554
-
Never getting to zero: elementary school students’understanding of the infinite divisibility of number and matter
-
Smith, C. L., Solomon, G. E. A., & Carey, S. (2005). Never getting to zero: elementary school students’understanding of the infinite divisibility of number and matter. Cognitive Psychology,51, 101–140. doi:10.1016/j.cogpsych.2005.03.001.
-
(2005)
Cognitive Psychology
, vol.51
, pp. 101-140
-
-
Smith, C.L.1
Solomon, G.E.A.2
Carey, S.3
-
33
-
-
13844292565
-
Students’ understanding of the numerical value of fractions: a conceptual change approach
-
Stafylidou, S., & Vosniadou, S. (2004). Students’ understanding of the numerical value of fractions: a conceptual change approach. Learning and Instruction,14, 503–518. doi:10.1016/j.learninstruc.2004.06.015.
-
(2004)
Learning and Instruction
, vol.14
, pp. 503-518
-
-
Stafylidou, S.1
Vosniadou, S.2
-
34
-
-
0035729603
-
A new hypothesis concerning children’s fractional knowledge
-
Steffe, L. P. (2002). A new hypothesis concerning children’s fractional knowledge. Journal of Mathematical Behavior,20, 267–307. doi:10.1016/S0732-3123(02)00075-5.
-
(2002)
Journal of Mathematical Behavior
, vol.20
, pp. 267-307
-
-
Steffe, L.P.1
-
35
-
-
8644246924
-
Fractions and multiplicative reasoning
-
Reston: The National Council of Teachers of Mathematics. In J. Kilpatrick, W. Gary Martin & D. Schifter (Eds.)
-
Thompson, P. W., & Saldanha, L. A. (2003). Fractions and multiplicative reasoning. In J. Kilpatrick, W. Gary Martin & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 95–113). Reston: The National Council of Teachers of Mathematics.
-
(2003)
A research companion to principles and standards for school mathematics
, pp. 95-113
-
-
Thompson, P.W.1
Saldanha, L.A.2
-
36
-
-
84863006711
-
Insights into children’s intuitions of addition, subtraction, multiplication, and division
-
Cockburn A, Littler G, (eds), Sage, London
-
Tirosh, D., Tsamir, P., & Hershkovitz, S. (2008). Insights into children’s intuitions of addition, subtraction, multiplication, and division. In A. Cockburn & G. Littler (Eds.), Mathematical misconceptions (pp. 54–70). London: Sage.
-
(2008)
Mathematical misconceptions
, pp. 54-70
-
-
Tirosh, D.1
Tsamir, P.2
Hershkovitz, S.3
-
37
-
-
84862993778
-
Naturally biased? In search for reaction time evidence for a natural number bias in adults
-
Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior,31, 344–355. doi:10.1016/j.jmathb.2012.02.001.
-
(2012)
The Journal of Mathematical Behavior
, vol.31
, pp. 344-355
-
-
Vamvakoussi, X.1
Van Dooren, W.2
Verschaffel, L.3
-
38
-
-
84872498745
-
Brief report. Educated adults are still affected by intuitions about the effect of arithmetical operations: evidence from a reaction-time study
-
Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2013). Brief report. Educated adults are still affected by intuitions about the effect of arithmetical operations: evidence from a reaction-time study. Educational Studies in Mathematics,82(2), 323–330. doi:10.1007/s10649-012-9432-8.
-
(2013)
Educational Studies in Mathematics
, vol.82
, Issue.2
, pp. 323-330
-
-
Vamvakoussi, X.1
Van Dooren, W.2
Verschaffel, L.3
-
39
-
-
77951261035
-
How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational numbers and their notation
-
Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational numbers and their notation. Cognition and Instruction,28(2), 181–209.
-
(2010)
Cognition and Instruction
, vol.28
, Issue.2
, pp. 181-209
-
-
Vamvakoussi, X.1
Vosniadou, S.2
-
40
-
-
84940032894
-
Inhibiting natural knowledge in fourth graders: towards a comprehensive test instrument
-
Van Hoof, J., Janssen, R., Verschaffel, L., & Van Dooren, W. (2015). Inhibiting natural knowledge in fourth graders: towards a comprehensive test instrument. ZDM Mathematics Education, 47(5) (this issue). doi:10.1007/s11858-014-0650-7.
-
(2015)
ZDM Mathematics Education
, vol.47
, Issue.5
-
-
Van Hoof, J.1
Janssen, R.2
Verschaffel, L.3
Van Dooren, W.4
-
41
-
-
84898705805
-
In search for the natural number bias in secondary school students’ interpretation of the effect of arithmetical operations
-
Van Hoof, J., Vandewalle, J., Verschaffel, L., & Van Dooren, W. (2014). In search for the natural number bias in secondary school students’ interpretation of the effect of arithmetical operations. Learning and Instruction (Advance online publication).,. doi:10.1016/j.learninstruc.2014.03.004.
-
(2014)
Learning and Instruction (Advance online publication).
-
-
Van Hoof, J.1
Vandewalle, J.2
Verschaffel, L.3
Van Dooren, W.4
|