-
1
-
-
0031531764
-
A characterization of Markov equivalence classes for acyclic digraphs
-
Andersson SA, Madigan D, Perlman MD (1997) A characterization of Markov equivalence classes for acyclic digraphs. Ann Stat 25:505-541
-
(1997)
Ann Stat
, vol.25
, pp. 505-541
-
-
Andersson, S.A.1
Madigan, D.2
Perlman, M.D.3
-
2
-
-
84873787355
-
Limitations of the application of fourfold tables to hospital data
-
Berkson J (1946) Limitations of the application of fourfold tables to hospital data. Biom Bull 2:47-53
-
(1946)
Biom Bull
, vol.2
, pp. 47-53
-
-
Berkson, J.1
-
3
-
-
33846516584
-
Pattern recognition and machine learning
-
Springer, New York
-
Bishop CM (2007) Pattern recognition and machine learning. Springer, New York
-
(2007)
-
-
Bishop, C.M.1
-
4
-
-
84894196028
-
Bayesian networks
-
Jørgensen SE, Fath B (eds), Elsevier, Burlington
-
Borsuk ME (2008) Bayesian networks. In: Jørgensen SE, Fath B (eds) Encyclopedia of ecology. Elsevier, Burlington, pp 307-317
-
(2008)
Encyclopedia of ecology
, pp. 307-317
-
-
Borsuk, M.E.1
-
5
-
-
77951169516
-
Deal: learning bayesian networks with mixed variables
-
R package version 1.2-34
-
Bottcher SG, Dethlefsen C (2011) Deal: learning bayesian networks with mixed variables. http://CRAN.R-project.org/package=deal. R package version 1.2-34
-
(2011)
-
-
Bottcher, S.G.1
Dethlefsen, C.2
-
6
-
-
77953935076
-
dagR: a suite of R functions for directed acyclic graphs
-
Breitling L (2010) dagR: a suite of R functions for directed acyclic graphs. Epidemiology 21: 586-587
-
(2010)
Epidemiology
, vol.21
, pp. 586-587
-
-
Breitling, L.1
-
7
-
-
0038517651
-
Finding optimal Bayesian networks
-
Darwiche A, Friedman N (eds), Morgan Kaufmann, San Francisco
-
Chickering D, Meek C (2002) Finding optimal Bayesian networks. In: Darwiche A, Friedman N (eds) Proceedings of the eighteenth annual conference on uncertainty in artificial intelligence (UAI-02). Morgan Kaufmann, San Francisco, pp 94-102
-
(2002)
Proceedings of the eighteenth annual conference on uncertainty in artificial intelligence (UAI-02)
, pp. 94-102
-
-
Chickering, D.1
Meek, C.2
-
8
-
-
0001019707
-
Learning Bayesian networks is NP-complete
-
Fisher D, Lenz HJ (eds), Lecture notes in statistics, vol 112. Springer, New York
-
Chickering DM (1996) Learning Bayesian networks is NP-complete. In: Fisher D, Lenz HJ (eds) Learning from data: artificial intelligence and statistics V. Lecture notes in statistics, vol 112. Springer, New York, pp 121-130
-
(1996)
Learning from data: artificial intelligence and statistics V
, pp. 121-130
-
-
Chickering, D.M.1
-
9
-
-
33646107783
-
Large-sample learning of Bayesian networks is NP-hard
-
Chickering DM, Heckerman D, Meek C (2004) Large-sample learning of Bayesian networks is NP-hard. J Mach Learn Res 5:1287-1330
-
(2004)
J Mach Learn Res
, vol.5
, pp. 1287-1330
-
-
Chickering, D.M.1
Heckerman, D.2
Meek, C.3
-
10
-
-
34250652453
-
Bayesian network models with discrete and continuous variables
-
Lucas P, Gámez JA, Salmerón A (eds), Studies in fuzziness and soft computing, vol 213. Springer, Berlin
-
Cobb BR, Rumí R, Salmerón A (2007) Bayesian network models with discrete and continuous variables. In: Lucas P, Gámez JA, Salmerón A (eds) Advances in probabilistic graphical models. Studies in fuzziness and soft computing, vol 213. Springer, Berlin, pp 81-102
-
(2007)
Advances in probabilistic graphical models
, pp. 81-102
-
-
Cobb, B.R.1
Rumí, R.2
Salmerón, A.3
-
11
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper GF, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9:309-347
-
(1992)
Mach Learn
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
12
-
-
0003687180
-
Probabilistic networks and expert systems
-
Information science and statistics. Springer, New York
-
Cowell RG, Dawid AP, Lauritzen SL, Spiegelhalter DJ (1999) Probabilistic networks and expert systems. Information science and statistics. Springer, New York
-
(1999)
-
-
Cowell, R.G.1
Dawid, A.P.2
Lauritzen, S.L.3
Spiegelhalter, D.J.4
-
13
-
-
0027560587
-
Approximating probabilistic inference in Bayesian belief networks is NP-hard
-
Dagum P, Luby M (1993) Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artif Intell 60:141-154
-
(1993)
Artif Intell
, vol.60
, pp. 141-154
-
-
Dagum, P.1
Luby, M.2
-
14
-
-
79958782255
-
Learning Bayesian networks: approaches and issues
-
Daly R, Shen Q, Aitken S (2011) Learning Bayesian networks: approaches and issues. Knowl Eng Rev 26:99-157
-
(2011)
Knowl Eng Rev
, vol.26
, pp. 99-157
-
-
Daly, R.1
Shen, Q.2
Aitken, S.3
-
15
-
-
84924631606
-
Modeling and reasoning with Bayesian networks
-
Cambridge University Press, Cambridge
-
Darwiche A (2009) Modeling and reasoning with Bayesian networks. Cambridge University Press, Cambridge
-
(2009)
-
-
Darwiche, A.1
-
16
-
-
78650115042
-
Bayesian networks
-
Darwiche A (2010) Bayesian networks. Commun ACM 53:80-90
-
(2010)
Commun ACM
, vol.53
, pp. 80-90
-
-
Darwiche, A.1
-
17
-
-
84862882831
-
Beware of the DAG! JMLR workshop
-
Dawid AP (2010a) Beware of the DAG! JMLR workshop Conf Proc 6:59-86
-
(2010)
Conf Proc
, vol.6
, pp. 59-86
-
-
Dawid, A.P.1
-
18
-
-
84947614578
-
Seeing and doing: the Pearlian synthesis
-
Dechter R, Geffner H, Halpern JY (eds), College Publications, London
-
Dawid AP (2010b) Seeing and doing: the Pearlian synthesis. In: Dechter R, Geffner H, Halpern JY (eds) Heuristics, probability and causality: a tribute to Judea Pearl. College Publications, London, pp 309-325
-
(2010)
Heuristics, probability and causality: a tribute to Judea Pearl
, pp. 309-325
-
-
Dawid, A.P.1
-
19
-
-
28844468911
-
A common platform for graphical models in R: the gRbase package
-
Dethlefsen C, Højsgaard S (2005) A common platform for graphical models in R: the gRbase package. J Stat Softw 14:1-12
-
(2005)
J Stat Softw
, vol.14
, pp. 1-12
-
-
Dethlefsen, C.1
Højsgaard, S.2
-
20
-
-
34547712563
-
Mendelian randomisation: why epidemiology needs a formal language for causality
-
Russo F, Williamson J (eds), Texts in philosophy, vol 5. College Publications, London
-
Didelez V, Sheehan NA (2007) Mendelian randomisation: why epidemiology needs a formal language for causality. In: Russo F, Williamson J (eds) Causality and probability in the sciences. Texts in philosophy, vol 5. College Publications, London, pp 263-292
-
(2007)
Causality and probability in the sciences
, pp. 263-292
-
-
Didelez, V.1
Sheehan, N.A.2
-
21
-
-
84875456024
-
Improving accuracy of constraint-based structure learning
-
Technical Report 08-48, Computer Science Department, University of Massachusetts Amherst
-
Fast A, Hay M, Jensen D (2008) Improving accuracy of constraint-based structure learning. Technical Report 08-48, Computer Science Department, University of Massachusetts Amherst
-
(2008)
-
-
Fast, A.1
Hay, M.2
Jensen, D.3
-
22
-
-
0001586968
-
Learning belief networks in the presence of missing values and hidden variables
-
Fisher DH (ed), Morgan Kaufmann, San Francisco
-
Friedman N (1997) Learning belief networks in the presence of missing values and hidden variables. In: Fisher DH (ed) Proceedings of the fourteenth international conference on machine learning (ICML '97). Morgan Kaufmann, San Francisco, pp 125-133
-
(1997)
Proceedings of the fourteenth international conference on machine learning (ICML '97)
, pp. 125-133
-
-
Friedman, N.1
-
23
-
-
0842288337
-
Inferring cellular networks using probabilistic graphical models
-
Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303:799-805
-
(2004)
Science
, vol.303
, pp. 799-805
-
-
Friedman, N.1
-
24
-
-
0002219642
-
Data analysis with Bayesian networks: a bootstrap approach
-
Prade H, Laskey K (eds), Morgan Kaufmann, San Francisco
-
Friedman N, Goldszmidt M, Wyner A (1999a) Data analysis with Bayesian networks: a bootstrap approach. In: Prade H, Laskey K (eds) Proceedings of the fifteenth annual conference on uncertainty in artificial intelligence (UAI-99). Morgan Kaufmann, San Francisco, pp 196-205
-
(1999)
Proceedings of the fifteenth annual conference on uncertainty in artificial intelligence (UAI-99)
, pp. 196-205
-
-
Friedman, N.1
Goldszmidt, M.2
Wyner, A.3
-
25
-
-
38049044599
-
On the application of the bootstrap for computing confidence measures on features of induced bayesian networks
-
Heckerman D, Whittaker J (eds), Morgan Kaufmann, San Francisco
-
Friedman N, Goldszmidt M, Wyner A (1999b) On the application of the bootstrap for computing confidence measures on features of induced bayesian networks. In: Heckerman D, Whittaker J (eds) Proceedings of the seventh international workshop on artificial intelligence and statistics. Morgan Kaufmann, San Francisco, pp 197-202
-
(1999)
Proceedings of the seventh international workshop on artificial intelligence and statistics
, pp. 197-202
-
-
Friedman, N.1
Goldszmidt, M.2
Wyner, A.3
-
26
-
-
0035612908
-
Stratified exponential families: graphical models and model selection
-
Geiger D, Heckerman D, King H, Me (2001) Stratified exponential families: graphical models and model selection. Ann Stat 29:505-529
-
(2001)
Ann Stat
, vol.29
, pp. 505-529
-
-
Geiger, D.1
Heckerman, D.2
King, H.M.3
-
27
-
-
78650799636
-
Adjusting for selection effects in epidemiologic studies: why sensitivity analysis is the only "solution"
-
Geneletti S, Mason A, Best N (2011) Adjusting for selection effects in epidemiologic studies: why sensitivity analysis is the only "solution". Epidemiology 22:36-39
-
(2011)
Epidemiology
, vol.22
, pp. 36-39
-
-
Geneletti, S.1
Mason, A.2
Best, N.3
-
28
-
-
1842714928
-
Understanding tuberculosis epidemiology using structured statistical models
-
Getoor L, Rhee JT, Koller D, Small P (2004) Understanding tuberculosis epidemiology using structured statistical models. Artif Intell Med 30:233-256
-
(2004)
Artif Intell Med
, vol.30
, pp. 233-256
-
-
Getoor, L.1
Rhee, J.T.2
Koller, D.3
Small, P.4
-
29
-
-
0003860037
-
Markov Chain Monte Carlo in practice
-
Chapman & Hall, Boca Raton
-
Gilks WR, Richardson T, Spiegelhalter D (1996) Markov Chain Monte Carlo in practice. Chapman & Hall, Boca Raton
-
(1996)
-
-
Gilks, W.R.1
Richardson, T.2
Spiegelhalter, D.3
-
30
-
-
0000411214
-
Tabu search - part i
-
Glover F (1989) Tabu search - part i. ORSA J Comput 1:190-206
-
(1989)
ORSA J Comput
, vol.1
, pp. 190-206
-
-
Glover, F.1
-
31
-
-
0001724713
-
Tabu search - part ii
-
Glover F (1990) Tabu search - part ii. ORSA J Comput 2:4-32
-
(1990)
ORSA J Comput
, vol.2
, pp. 4-32
-
-
Glover, F.1
-
33
-
-
42649123523
-
Using causal diagrams to understand common problems in social epidemiology
-
Oakes J, Kaufmann J (eds), Jossey-Bass, San Francisco
-
Glymour MM (2006) Using causal diagrams to understand common problems in social epidemiology. In: Oakes J, Kaufmann J (eds) Methods in social epidemiology. Jossey-Bass, San Francisco, pp 393-428
-
(2006)
Methods in social epidemiology
, pp. 393-428
-
-
Glymour, M.M.1
-
34
-
-
84971238402
-
Causal diagrams
-
Rothman K, Greenland S, Lash T (eds), Lippincott Williams & Wilkins, Philadelphia
-
Glymour MM, Greenland S (2008) Causal diagrams. In: Rothman K, Greenland S, Lash T (eds) Modern epidemiology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 183-209
-
(2008)
Modern epidemiology, 3rd edn
, pp. 183-209
-
-
Glymour, M.M.1
Greenland, S.2
-
35
-
-
0036816793
-
An overview of relations among causal modelling methods
-
Greenland S, Brumback B (2002) An overview of relations among causal modelling methods. Int J Epidemiol 31:1030-1037
-
(2002)
Int J Epidemiol
, vol.31
, pp. 1030-1037
-
-
Greenland, S.1
Brumback, B.2
-
37
-
-
0002370418
-
A tutorial on learning with Bayesian networks
-
Jordan M (ed), MIT, Cambridge
-
Heckerman D (1999) A tutorial on learning with Bayesian networks. In: Jordan M (ed) Learning in graphical models. MIT, Cambridge, pp 301-354
-
(1999)
Learning in graphical models
, pp. 301-354
-
-
Heckerman, D.1
-
38
-
-
34249761849
-
Learning Bayesian networks: the combination of knowledge and statistical data
-
Heckerman D, Geiger D, Chickering DM (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20:197-243
-
(1995)
Mach Learn
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
39
-
-
33748106661
-
Instruments for causal inference: an epidemiologist's dream?
-
Hernán MA, Robins JM (2006) Instruments for causal inference: an epidemiologist's dream? Epidemiology 17:360-372
-
(2006)
Epidemiology
, vol.17
, pp. 360-372
-
-
Hernán, M.A.1
Robins, J.M.2
-
40
-
-
0037080447
-
Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology
-
Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA (2002) Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol 155:176-184
-
(2002)
Am J Epidemiol
, vol.155
, pp. 176-184
-
-
Hernán, M.A.1
Hernández-Díaz, S.2
Werler, M.M.3
Mitchell, A.A.4
-
42
-
-
84859316945
-
Graphical independence networks with the gRain package for R
-
Højsgaard S (2012) Graphical independence networks with the gRain package for R. J Stat Softw 46:1-26
-
(2012)
J Stat Softw
, vol.46
, pp. 1-26
-
-
Højsgaard, S.1
-
44
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier D (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19:2271-2282
-
(2003)
Bioinformatics
, vol.19
, pp. 2271-2282
-
-
Husmeier, D.1
-
45
-
-
30544451226
-
Probabilistic modeling in bioinformatics and medical informatics
-
Springer, London
-
Husmeier D (2005) Probabilistic modeling in bioinformatics and medical informatics. Springer, London
-
(2005)
-
-
Husmeier, D.1
-
46
-
-
0036372453
-
Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
-
Imoto S, Goto T, Miyano S (2002) Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pac Symp Biocomput 7:175-186
-
(2002)
Pac Symp Biocomput
, vol.7
, pp. 175-186
-
-
Imoto, S.1
Goto, T.2
Miyano, S.3
-
47
-
-
3042698613
-
Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
-
Imoto S, Kim S, Goto T, Miyano S, Aburatani S, Tashiro K, Kuhara S (2003) Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J Bioinform Comput Biol 1:231-252
-
(2003)
J Bioinform Comput Biol
, vol.1
, pp. 231-252
-
-
Imoto, S.1
Kim, S.2
Goto, T.3
Miyano, S.4
Aburatani, S.5
Tashiro, K.6
Kuhara, S.7
-
48
-
-
0003448310
-
Bayesian networks and decision graphs
-
Springer, New York
-
Jensen FV, Nielsen TD (2007) Bayesian networks and decision graphs. Springer, New York
-
(2007)
-
-
Jensen, F.V.1
Nielsen, T.D.2
-
49
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the PC-algorithm
-
Kalisch M, Bühlmann P (2007) Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J Mach Learn Res 8:613-636
-
(2007)
J Mach Learn Res
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Bühlmann, P.2
-
50
-
-
84863330390
-
Causal inference using graphical models with the R package pcalg
-
Kalisch M, Mächler M, Colombo D, Maathuis MH, Bühlmann P (2012) Causal inference using graphical models with the R package pcalg. J Stat Softw 47:1-26
-
(2012)
J Stat Softw
, vol.47
, pp. 1-26
-
-
Kalisch, M.1
Mächler, M.2
Colombo, D.3
Maathuis, M.H.4
Bühlmann, P.5
-
52
-
-
45849150388
-
Bayesian networks and influence diagrams: a guide to construction and analysis
-
Springer, New York
-
Kjærulff UB, Madsen AL (2008) Bayesian networks and influence diagrams: a guide to construction and analysis. Springer, New York
-
(2008)
-
-
Kjærulff, U.B.1
Madsen, A.L.2
-
53
-
-
85026226466
-
DAG program
-
Accessed 3 Oct 2012
-
Knüppel S (2011) DAG program. http://epi.dife.de/dag/. Accessed 3 Oct 2012
-
(2011)
-
-
Knüppel, S.1
-
54
-
-
73849088421
-
DAG program: identifying minimal sufficient adjustment sets
-
Knüppel S, Stang A (2010) DAG program: identifying minimal sufficient adjustment sets. Epidemiology 21:159
-
(2010)
Epidemiology
, vol.21
, pp. 159
-
-
Knüppel, S.1
Stang, A.2
-
55
-
-
70649111792
-
Probabilistic graphical models: principles and techniques
-
MIT, Cambridge
-
Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT, Cambridge
-
(2009)
-
-
Koller, D.1
Friedman, N.2
-
56
-
-
4043177120
-
Bayesian artificial intelligence
-
2nd edn. CRC, Boca Raton
-
Korb KB, Nicholson AE (2011) Bayesian artificial intelligence. 2nd edn. CRC, Boca Raton
-
(2011)
-
-
Korb, K.B.1
Nicholson, A.E.2
-
57
-
-
0004047518
-
Graphical models
-
Clarendon, Oxford
-
Lauritzen SL (1990) Graphical models. Clarendon, Oxford
-
(1990)
-
-
Lauritzen, S.L.1
-
58
-
-
84950442428
-
Propagation of probabilities, means, and variances in mixed graphical association models
-
Lauritzen SL (1992) Propagation of probabilities, means, and variances in mixed graphical association models. J Am Stat Assoc 87:1098-1108
-
(1992)
J Am Stat Assoc
, vol.87
, pp. 1098-1108
-
-
Lauritzen, S.L.1
-
59
-
-
58149210716
-
The EM algorithm for graphical association models with missing data
-
Lauritzen SL (1995) The EM algorithm for graphical association models with missing data. Comput Stat Data An 19:191-201
-
(1995)
Comput Stat Data An
, vol.19
, pp. 191-201
-
-
Lauritzen, S.L.1
-
60
-
-
0001006209
-
Local computations with probabilities on graphical structures and their application to expert systems
-
Lauritzen SL, Spiegelhalter DJ (1988) Local computations with probabilities on graphical structures and their application to expert systems. J Roy Stat Soc B 50:157-224
-
(1988)
J Roy Stat Soc B
, vol.50
, pp. 157-224
-
-
Lauritzen, S.L.1
Spiegelhalter, D.J.2
-
62
-
-
61749097205
-
Controlling the false discovery rate of the association/causality structure learned with the PC algorithm
-
Li J, Wang ZJ (2009) Controlling the false discovery rate of the association/causality structure learned with the PC algorithm. J Mach Learn Res 10:475-514
-
(2009)
J Mach Learn Res
, vol.10
, pp. 475-514
-
-
Li, J.1
Wang, Z.J.2
-
63
-
-
84877065956
-
Empirical evaluation of scoring functions for Bayesian network model selection
-
Liu Z, Malone B, Yuan C (2012) Empirical evaluation of scoring functions for Bayesian network model selection. BMC Bioinform 13:S14
-
(2012)
BMC Bioinform
, vol.13
, pp. S14
-
-
Liu, Z.1
Malone, B.2
Yuan, C.3
-
64
-
-
70449411807
-
The BUGS project: evolution, critique and future directions
-
Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions. Stat Med 28:3049-3067
-
(2009)
Stat Med
, vol.28
, pp. 3049-3067
-
-
Lunn, D.1
Spiegelhalter, D.2
Thomas, A.3
Best, N.4
-
65
-
-
8344240433
-
The Hugin tool for learning Bayesian networks
-
Nielsen TD, Zhang NL (eds), Lecture notes in computer science, vol 2711. Springer, Berlin
-
Madsen AL, Lang M, Kjærulff UB, Jensen F (2003) The Hugin tool for learning Bayesian networks. In: Nielsen TD, Zhang NL (eds) Symbolic and quantitative approaches to reasoning with uncertainty. Lecture notes in computer science, vol 2711. Springer, Berlin, pp 594-605
-
(2003)
Symbolic and quantitative approaches to reasoning with uncertainty
, pp. 594-605
-
-
Madsen, A.L.1
Lang, M.2
Kjærulff, U.B.3
Jensen, F.4
-
66
-
-
38449088751
-
Inferring cellular networks - a review
-
Markowetz F, Spang R (2007) Inferring cellular networks - a review. BMC Bioinform 8(Suppl 6):S5
-
(2007)
BMC Bioinform
, vol.8
, pp. S5
-
-
Markowetz, F.1
Spang, R.2
-
67
-
-
84937428461
-
Mixtures of truncated exponentials in hybrid Bayesian networks
-
Benferhat S, Besnard P (eds), Lecture notes in computer science, vol 2143. Springer, Berlin
-
Moral S, Rumí R, Salmeó A (2001) Mixtures of truncated exponentials in hybrid Bayesian networks. In: Benferhat S, Besnard P (eds) Symbolic and quantitative approaches to reasoning with uncertainty. Lecture notes in computer science, vol 2143. Springer, Berlin, pp 156-167
-
(2001)
Symbolic and quantitative approaches to reasoning with uncertainty
, pp. 156-167
-
-
Moral, S.1
Rumí, R.2
Salmeó, A.3
-
68
-
-
62249132926
-
Software for graphical models: a review
-
Murphy K (2007) Software for graphical models: a review. ISBA Bull 14:13-15
-
(2007)
ISBA Bull
, vol.14
, pp. 13-15
-
-
Murphy, K.1
-
69
-
-
35148892795
-
Software packages for graphical models/Bayesian networks
-
Accessed 15 Aug 2012
-
Murphy K (2012) Software packages for graphical models/Bayesian networks. http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html. Accessed 15 Aug 2012
-
(2012)
-
-
Murphy, K.1
-
70
-
-
84555187603
-
Emergency department triaging of admitted stroke patients - a Bayesian network analysis
-
Nadathur SG, Warren JR (2011) Emergency department triaging of admitted stroke patients - a Bayesian network analysis. Health Inform J 17:294-312
-
(2011)
Health Inform J
, vol.17
, pp. 294-312
-
-
Nadathur, S.G.1
Warren, J.R.2
-
71
-
-
84908883654
-
Using Bayesian networks to model hierarchical relationships in epidemiological studies
-
Nguefack-Tsague G (2011) Using Bayesian networks to model hierarchical relationships in epidemiological studies. Epidemiol Health 33:e2011006
-
(2011)
Epidemiol Health
, vol.33
, pp. e2011006
-
-
Nguefack-Tsague, G.1
-
72
-
-
0003398906
-
Causality - models, reasoning and inference
-
2nd edn. Cambridge University Press, Cambridge
-
Pearl J (2009) Causality - models, reasoning and inference. 2nd edn. Cambridge University Press, Cambridge
-
(2009)
-
-
Pearl, J.1
-
73
-
-
84863304598
-
R: a language and environment for statistical computing
-
R Foundation for Statistical Computing, Vienna, Accessed 15 Aug 2012
-
R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 15 Aug 2012
-
(2012)
-
-
-
74
-
-
85026274010
-
Bootstrapping the PC and CPC algorithms to improve search accuracy
-
Tech Rep 101, Department of Philosophy, Carnegie Mellon University, Accessed 15 Aug 2012
-
Ramsey J (2010) Bootstrapping the PC and CPC algorithms to improve search accuracy. Tech Rep 101, Department of Philosophy, Carnegie Mellon University. http://repository.cmu.edu/philosophy/101. Accessed 15 Aug 2012
-
(2010)
-
-
Ramsey, J.1
-
76
-
-
0035063108
-
Data, design, and background knowledge in etiologic inference
-
Robins JM (2001) Data, design, and background knowledge in etiologic inference. Epidemiology 12:313-320
-
(2001)
Epidemiology
, vol.12
, pp. 313-320
-
-
Robins, J.M.1
-
77
-
-
0026643893
-
G-estimation of the effect of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of aids patients
-
Robins JM, Blevins D, Ritter G, Wulfsohn M (1992) G-estimation of the effect of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of aids patients. Epidemiology 3:319-336
-
(1992)
Epidemiology
, vol.3
, pp. 319-336
-
-
Robins, J.M.1
Blevins, D.2
Ritter, G.3
Wulfsohn, M.4
-
78
-
-
0033847784
-
Marginal structural models and causal inference in epidemiology
-
Robins JM, Hernán MA, Brumback B (2000) Marginal structural models and causal inference in epidemiology. Epidemiology 11:550-560
-
(2000)
Epidemiology
, vol.11
, pp. 550-560
-
-
Robins, J.M.1
Hernán, M.A.2
Brumback, B.3
-
80
-
-
0002444961
-
Counting unlabeled acyclic digraphs
-
Little H (ed), Lecture notes in mathematics, vol 622. Springer, Berlin
-
Robinson R (1977) Counting unlabeled acyclic digraphs. In: Little H (ed) Combinatorial mathematics V. Lecture notes in mathematics, vol 622. Springer, Berlin, pp 28-43
-
(1977)
Combinatorial mathematics V
, pp. 28-43
-
-
Robinson, R.1
-
82
-
-
0004292914
-
Modern epidemiology
-
3rd edn. Lippincott Williams & Wilkins, Philadelphia
-
Rothman KJ, Greenland S, Lash T (2008) Modern epidemiology. 3rd edn. Lippincott Williams & Wilkins, Philadelphia
-
(2008)
-
-
Rothman, K.J.1
Greenland, S.2
Lash, T.3
-
83
-
-
58149417330
-
Estimating causal effects of treatments in randomized and nonrandomized studies
-
Rubin D (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol 66:688-701
-
(1974)
J Educ Psychol
, vol.66
, pp. 688-701
-
-
Rubin, D.1
-
84
-
-
77955124773
-
Learning Bayesian networks with the bnlearn R package
-
Scutari M (2010) Learning Bayesian networks with the bnlearn R package. J Stat Softw 35:1-22
-
(2010)
J Stat Softw
, vol.35
, pp. 1-22
-
-
Scutari, M.1
-
85
-
-
79960135064
-
A re-definition of mixtures of polynomials for inference in hybrid Bayesian networks
-
Liu W (ed), Lecture notes in computer science, vol 6717. Springer, Berlin
-
Shenoy PP (2011) A re-definition of mixtures of polynomials for inference in hybrid Bayesian networks. In: Liu W (ed) Symbolic and quantitative approaches to reasoning with uncertainty. Lecture notes in computer science, vol 6717. Springer, Berlin, pp 98-109
-
(2011)
Symbolic and quantitative approaches to reasoning with uncertainty
, pp. 98-109
-
-
Shenoy, P.P.1
-
86
-
-
57649138547
-
Reducing bias through directed acyclic graphs
-
Shrier I, Platt RW (2008) Reducing bias through directed acyclic graphs. BMC Med Res Methodol 8:70
-
(2008)
BMC Med Res Methodol
, vol.8
, pp. 70
-
-
Shrier, I.1
Platt, R.W.2
-
87
-
-
84986980101
-
Sequential updating of conditional probabilities on directed graphical structures
-
Spiegelhalter DJ, Lauritzen SL (1990) Sequential updating of conditional probabilities on directed graphical structures. Networks 20:579-605
-
(1990)
Networks
, vol.20
, pp. 579-605
-
-
Spiegelhalter, D.J.1
Lauritzen, S.L.2
-
88
-
-
68349087665
-
An algorithm for fast recovery of sparse causal graphs
-
Report CMU-PHIL-15, Department of Philosophy, Carnegie Mellon University
-
Spirtes P, Glymour C (1990) An algorithm for fast recovery of sparse causal graphs. Report CMU-PHIL-15, Department of Philosophy, Carnegie Mellon University
-
(1990)
-
-
Spirtes, P.1
Glymour, C.2
-
89
-
-
0040731124
-
Causal inference in the presence of latent variables and selection bias
-
Besnard P, Hanks S (eds), Morgan Kaufmann, San Francisco
-
Spirtes P, Meek C, Richardson T (1995) Causal inference in the presence of latent variables and selection bias. In: Besnard P, Hanks S (eds) Proceedings of the eleventh conference on uncertainty in artificial intelligence (UAI-95). Morgan Kaufmann, San Francisco, pp 499-506
-
(1995)
Proceedings of the eleventh conference on uncertainty in artificial intelligence (UAI-95)
, pp. 499-506
-
-
Spirtes, P.1
Meek, C.2
Richardson, T.3
-
90
-
-
0003614273
-
Causation, prediction and search, 2nd edn
-
MIT, Cambridge
-
Spirtes P, Glymour C, Scheines R (2001) Causation, prediction and search, 2nd edn. MIT, Cambridge
-
(2001)
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
91
-
-
70449516824
-
Conditional independence relations among biological markers may improve clinical decision as in the case of triple negative breast cancers
-
Stefanini FM, Coradini D, Biganzoli E (2009) Conditional independence relations among biological markers may improve clinical decision as in the case of triple negative breast cancers. BMC Bioinform 10(Suppl 12):S13
-
(2009)
BMC Bioinform
, vol.10
, pp. S13
-
-
Stefanini, F.M.1
Coradini, D.2
Biganzoli, E.3
-
92
-
-
85026241363
-
DAGitty v.10
-
Accessed 3 Oct 2012
-
Textor J (2012) DAGitty v.10. http://www.dagitty.net/. Accessed 3 Oct 2012
-
(2012)
-
-
Textor, J.1
-
93
-
-
80051499209
-
DAGitty: a graphical tool for analyzing causal diagrams
-
Textor J, Hardt J, Knüppel S (2011) DAGitty: a graphical tool for analyzing causal diagrams. Epidemiology 5:745
-
(2011)
Epidemiology
, vol.5
, pp. 745
-
-
Textor, J.1
Hardt, J.2
Knüppel, S.3
-
94
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
Tsamardinos I, Brown LE, Aliferis CF (2006) The max-min hill-climbing Bayesian network structure learning algorithm. Mach Learn 65:31-78
-
(2006)
Mach Learn
, vol.65
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
-
95
-
-
35348924310
-
Directed acyclic graphs, sufficient causes, and the properties of conditioning on a common effect
-
VanderWeele TJ, Robins JM (2007a) Directed acyclic graphs, sufficient causes, and the properties of conditioning on a common effect. Am J Epidemiol 166:1096-1104
-
(2007)
Am J Epidemiol
, vol.166
, pp. 1096-1104
-
-
VanderWeele, T.J.1
Robins, J.M.2
-
96
-
-
34547924073
-
Four types of effect modification: a classification based on directed acyclic graphs
-
VanderWeele TJ, Robins JM (2007b) Four types of effect modification: a classification based on directed acyclic graphs. Epidemiology 18:561-568
-
(2007)
Epidemiology
, vol.18
, pp. 561-568
-
-
VanderWeele, T.J.1
Robins, J.M.2
-
97
-
-
0002095306
-
Equivalence and synthesis of causal models
-
Bonissone P, Henrion M, Kanal L, Lemmer J (eds), Elsevier, Amsterdam
-
Verma T, Pearl J (1991) Equivalence and synthesis of causal models. In: Bonissone P, Henrion M, Kanal L, Lemmer J (eds) Proceedings of the sixth conference on uncertainty in artificial intelligence (UAI-90). Elsevier, Amsterdam, pp 258-268
-
(1991)
Proceedings of the sixth conference on uncertainty in artificial intelligence (UAI-90)
, pp. 258-268
-
-
Verma, T.1
Pearl, J.2
-
98
-
-
0001775899
-
An algorithm for deciding if a set of observed independencies has a causal explanation
-
Dubois D, Wellman MP, D'Ambrosio B, Smets P (eds), Morgan Kaufmann, San Mateo
-
Verma T, Pearl J (1992) An algorithm for deciding if a set of observed independencies has a causal explanation. In: Dubois D, Wellman MP, D'Ambrosio B, Smets P (eds) Proceedings of the eighth conference on uncertainty in artificial intelligence (UAI-92). Morgan Kaufmann, San Mateo, pp 323-330
-
(1992)
Proceedings of the eighth conference on uncertainty in artificial intelligence (UAI-92)
, pp. 323-330
-
-
Verma, T.1
Pearl, J.2
-
99
-
-
34948816667
-
A hybrid Bayesian network learning method for constructing gene networks
-
Wang M, Chen Z, Cloutier S (2007) A hybrid Bayesian network learning method for constructing gene networks. Comput Biol Chem 31:361-372
-
(2007)
Comput Biol Chem
, vol.31
, pp. 361-372
-
-
Wang, M.1
Chen, Z.2
Cloutier, S.3
-
100
-
-
0027468093
-
Toward a clearer definition of confounding
-
Weinberg CR (1993) Toward a clearer definition of confounding. Am J Epidemiol 137:1-8
-
(1993)
Am J Epidemiol
, vol.137
, pp. 1-8
-
-
Weinberg, C.R.1
-
101
-
-
34547905708
-
Can DAGs clarify effect modification?
-
Weinberg CR (2007) Can DAGs clarify effect modification? Epidemiology 18:569-572
-
(2007)
Epidemiology
, vol.18
, pp. 569-572
-
-
Weinberg, C.R.1
-
102
-
-
4444358530
-
A hybrid approach to discover Bayesian networks from databases using evolutionary programming
-
ICDM '02. IEEE Computer Society, Los Alamitos
-
Wong ML, Lee SY, Leung KS (2002) A hybrid approach to discover Bayesian networks from databases using evolutionary programming. In: Proceedings of the 2002 IEEE international conference on data mining, ICDM '02. IEEE Computer Society, Los Alamitos, pp 498-505
-
(2002)
Proceedings of the 2002 IEEE international conference on data mining
, pp. 498-505
-
-
Wong, M.L.1
Lee, S.Y.2
Leung, K.S.3
|