메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1481-1517

Directed acyclic graphs

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84940000974     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-0-387-09834-0_65     Document Type: Chapter
Times cited : (18)

References (102)
  • 1
    • 0031531764 scopus 로고    scopus 로고
    • A characterization of Markov equivalence classes for acyclic digraphs
    • Andersson SA, Madigan D, Perlman MD (1997) A characterization of Markov equivalence classes for acyclic digraphs. Ann Stat 25:505-541
    • (1997) Ann Stat , vol.25 , pp. 505-541
    • Andersson, S.A.1    Madigan, D.2    Perlman, M.D.3
  • 2
    • 84873787355 scopus 로고
    • Limitations of the application of fourfold tables to hospital data
    • Berkson J (1946) Limitations of the application of fourfold tables to hospital data. Biom Bull 2:47-53
    • (1946) Biom Bull , vol.2 , pp. 47-53
    • Berkson, J.1
  • 3
    • 33846516584 scopus 로고    scopus 로고
    • Pattern recognition and machine learning
    • Springer, New York
    • Bishop CM (2007) Pattern recognition and machine learning. Springer, New York
    • (2007)
    • Bishop, C.M.1
  • 4
    • 84894196028 scopus 로고    scopus 로고
    • Bayesian networks
    • Jørgensen SE, Fath B (eds), Elsevier, Burlington
    • Borsuk ME (2008) Bayesian networks. In: Jørgensen SE, Fath B (eds) Encyclopedia of ecology. Elsevier, Burlington, pp 307-317
    • (2008) Encyclopedia of ecology , pp. 307-317
    • Borsuk, M.E.1
  • 5
    • 77951169516 scopus 로고    scopus 로고
    • Deal: learning bayesian networks with mixed variables
    • R package version 1.2-34
    • Bottcher SG, Dethlefsen C (2011) Deal: learning bayesian networks with mixed variables. http://CRAN.R-project.org/package=deal. R package version 1.2-34
    • (2011)
    • Bottcher, S.G.1    Dethlefsen, C.2
  • 6
    • 77953935076 scopus 로고    scopus 로고
    • dagR: a suite of R functions for directed acyclic graphs
    • Breitling L (2010) dagR: a suite of R functions for directed acyclic graphs. Epidemiology 21: 586-587
    • (2010) Epidemiology , vol.21 , pp. 586-587
    • Breitling, L.1
  • 8
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • Fisher D, Lenz HJ (eds), Lecture notes in statistics, vol 112. Springer, New York
    • Chickering DM (1996) Learning Bayesian networks is NP-complete. In: Fisher D, Lenz HJ (eds) Learning from data: artificial intelligence and statistics V. Lecture notes in statistics, vol 112. Springer, New York, pp 121-130
    • (1996) Learning from data: artificial intelligence and statistics V , pp. 121-130
    • Chickering, D.M.1
  • 9
    • 33646107783 scopus 로고    scopus 로고
    • Large-sample learning of Bayesian networks is NP-hard
    • Chickering DM, Heckerman D, Meek C (2004) Large-sample learning of Bayesian networks is NP-hard. J Mach Learn Res 5:1287-1330
    • (2004) J Mach Learn Res , vol.5 , pp. 1287-1330
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 10
    • 34250652453 scopus 로고    scopus 로고
    • Bayesian network models with discrete and continuous variables
    • Lucas P, Gámez JA, Salmerón A (eds), Studies in fuzziness and soft computing, vol 213. Springer, Berlin
    • Cobb BR, Rumí R, Salmerón A (2007) Bayesian network models with discrete and continuous variables. In: Lucas P, Gámez JA, Salmerón A (eds) Advances in probabilistic graphical models. Studies in fuzziness and soft computing, vol 213. Springer, Berlin, pp 81-102
    • (2007) Advances in probabilistic graphical models , pp. 81-102
    • Cobb, B.R.1    Rumí, R.2    Salmerón, A.3
  • 11
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper GF, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9:309-347
    • (1992) Mach Learn , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 12
    • 0003687180 scopus 로고    scopus 로고
    • Probabilistic networks and expert systems
    • Information science and statistics. Springer, New York
    • Cowell RG, Dawid AP, Lauritzen SL, Spiegelhalter DJ (1999) Probabilistic networks and expert systems. Information science and statistics. Springer, New York
    • (1999)
    • Cowell, R.G.1    Dawid, A.P.2    Lauritzen, S.L.3    Spiegelhalter, D.J.4
  • 13
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is NP-hard
    • Dagum P, Luby M (1993) Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artif Intell 60:141-154
    • (1993) Artif Intell , vol.60 , pp. 141-154
    • Dagum, P.1    Luby, M.2
  • 14
    • 79958782255 scopus 로고    scopus 로고
    • Learning Bayesian networks: approaches and issues
    • Daly R, Shen Q, Aitken S (2011) Learning Bayesian networks: approaches and issues. Knowl Eng Rev 26:99-157
    • (2011) Knowl Eng Rev , vol.26 , pp. 99-157
    • Daly, R.1    Shen, Q.2    Aitken, S.3
  • 15
    • 84924631606 scopus 로고    scopus 로고
    • Modeling and reasoning with Bayesian networks
    • Cambridge University Press, Cambridge
    • Darwiche A (2009) Modeling and reasoning with Bayesian networks. Cambridge University Press, Cambridge
    • (2009)
    • Darwiche, A.1
  • 16
    • 78650115042 scopus 로고    scopus 로고
    • Bayesian networks
    • Darwiche A (2010) Bayesian networks. Commun ACM 53:80-90
    • (2010) Commun ACM , vol.53 , pp. 80-90
    • Darwiche, A.1
  • 17
    • 84862882831 scopus 로고    scopus 로고
    • Beware of the DAG! JMLR workshop
    • Dawid AP (2010a) Beware of the DAG! JMLR workshop Conf Proc 6:59-86
    • (2010) Conf Proc , vol.6 , pp. 59-86
    • Dawid, A.P.1
  • 18
    • 84947614578 scopus 로고    scopus 로고
    • Seeing and doing: the Pearlian synthesis
    • Dechter R, Geffner H, Halpern JY (eds), College Publications, London
    • Dawid AP (2010b) Seeing and doing: the Pearlian synthesis. In: Dechter R, Geffner H, Halpern JY (eds) Heuristics, probability and causality: a tribute to Judea Pearl. College Publications, London, pp 309-325
    • (2010) Heuristics, probability and causality: a tribute to Judea Pearl , pp. 309-325
    • Dawid, A.P.1
  • 19
    • 28844468911 scopus 로고    scopus 로고
    • A common platform for graphical models in R: the gRbase package
    • Dethlefsen C, Højsgaard S (2005) A common platform for graphical models in R: the gRbase package. J Stat Softw 14:1-12
    • (2005) J Stat Softw , vol.14 , pp. 1-12
    • Dethlefsen, C.1    Højsgaard, S.2
  • 20
    • 34547712563 scopus 로고    scopus 로고
    • Mendelian randomisation: why epidemiology needs a formal language for causality
    • Russo F, Williamson J (eds), Texts in philosophy, vol 5. College Publications, London
    • Didelez V, Sheehan NA (2007) Mendelian randomisation: why epidemiology needs a formal language for causality. In: Russo F, Williamson J (eds) Causality and probability in the sciences. Texts in philosophy, vol 5. College Publications, London, pp 263-292
    • (2007) Causality and probability in the sciences , pp. 263-292
    • Didelez, V.1    Sheehan, N.A.2
  • 21
    • 84875456024 scopus 로고    scopus 로고
    • Improving accuracy of constraint-based structure learning
    • Technical Report 08-48, Computer Science Department, University of Massachusetts Amherst
    • Fast A, Hay M, Jensen D (2008) Improving accuracy of constraint-based structure learning. Technical Report 08-48, Computer Science Department, University of Massachusetts Amherst
    • (2008)
    • Fast, A.1    Hay, M.2    Jensen, D.3
  • 22
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • Fisher DH (ed), Morgan Kaufmann, San Francisco
    • Friedman N (1997) Learning belief networks in the presence of missing values and hidden variables. In: Fisher DH (ed) Proceedings of the fourteenth international conference on machine learning (ICML '97). Morgan Kaufmann, San Francisco, pp 125-133
    • (1997) Proceedings of the fourteenth international conference on machine learning (ICML '97) , pp. 125-133
    • Friedman, N.1
  • 23
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303:799-805
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 25
    • 38049044599 scopus 로고    scopus 로고
    • On the application of the bootstrap for computing confidence measures on features of induced bayesian networks
    • Heckerman D, Whittaker J (eds), Morgan Kaufmann, San Francisco
    • Friedman N, Goldszmidt M, Wyner A (1999b) On the application of the bootstrap for computing confidence measures on features of induced bayesian networks. In: Heckerman D, Whittaker J (eds) Proceedings of the seventh international workshop on artificial intelligence and statistics. Morgan Kaufmann, San Francisco, pp 197-202
    • (1999) Proceedings of the seventh international workshop on artificial intelligence and statistics , pp. 197-202
    • Friedman, N.1    Goldszmidt, M.2    Wyner, A.3
  • 26
    • 0035612908 scopus 로고    scopus 로고
    • Stratified exponential families: graphical models and model selection
    • Geiger D, Heckerman D, King H, Me (2001) Stratified exponential families: graphical models and model selection. Ann Stat 29:505-529
    • (2001) Ann Stat , vol.29 , pp. 505-529
    • Geiger, D.1    Heckerman, D.2    King, H.M.3
  • 27
    • 78650799636 scopus 로고    scopus 로고
    • Adjusting for selection effects in epidemiologic studies: why sensitivity analysis is the only "solution"
    • Geneletti S, Mason A, Best N (2011) Adjusting for selection effects in epidemiologic studies: why sensitivity analysis is the only "solution". Epidemiology 22:36-39
    • (2011) Epidemiology , vol.22 , pp. 36-39
    • Geneletti, S.1    Mason, A.2    Best, N.3
  • 28
    • 1842714928 scopus 로고    scopus 로고
    • Understanding tuberculosis epidemiology using structured statistical models
    • Getoor L, Rhee JT, Koller D, Small P (2004) Understanding tuberculosis epidemiology using structured statistical models. Artif Intell Med 30:233-256
    • (2004) Artif Intell Med , vol.30 , pp. 233-256
    • Getoor, L.1    Rhee, J.T.2    Koller, D.3    Small, P.4
  • 29
    • 0003860037 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo in practice
    • Chapman & Hall, Boca Raton
    • Gilks WR, Richardson T, Spiegelhalter D (1996) Markov Chain Monte Carlo in practice. Chapman & Hall, Boca Raton
    • (1996)
    • Gilks, W.R.1    Richardson, T.2    Spiegelhalter, D.3
  • 30
    • 0000411214 scopus 로고
    • Tabu search - part i
    • Glover F (1989) Tabu search - part i. ORSA J Comput 1:190-206
    • (1989) ORSA J Comput , vol.1 , pp. 190-206
    • Glover, F.1
  • 31
    • 0001724713 scopus 로고
    • Tabu search - part ii
    • Glover F (1990) Tabu search - part ii. ORSA J Comput 2:4-32
    • (1990) ORSA J Comput , vol.2 , pp. 4-32
    • Glover, F.1
  • 32
    • 85026213155 scopus 로고    scopus 로고
    • TETRAD project
    • Accessed 15 Aug 2012
    • Glymour C, Scheines R, Spirtes P, Ramsey J (2012) TETRAD project. http://www.phil.cmu.edu/projects/tetrad/. Accessed 15 Aug 2012
    • (2012)
    • Glymour, C.1    Scheines, R.2    Spirtes, P.3    Ramsey, J.4
  • 33
    • 42649123523 scopus 로고    scopus 로고
    • Using causal diagrams to understand common problems in social epidemiology
    • Oakes J, Kaufmann J (eds), Jossey-Bass, San Francisco
    • Glymour MM (2006) Using causal diagrams to understand common problems in social epidemiology. In: Oakes J, Kaufmann J (eds) Methods in social epidemiology. Jossey-Bass, San Francisco, pp 393-428
    • (2006) Methods in social epidemiology , pp. 393-428
    • Glymour, M.M.1
  • 34
    • 84971238402 scopus 로고    scopus 로고
    • Causal diagrams
    • Rothman K, Greenland S, Lash T (eds), Lippincott Williams & Wilkins, Philadelphia
    • Glymour MM, Greenland S (2008) Causal diagrams. In: Rothman K, Greenland S, Lash T (eds) Modern epidemiology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 183-209
    • (2008) Modern epidemiology, 3rd edn , pp. 183-209
    • Glymour, M.M.1    Greenland, S.2
  • 35
    • 0036816793 scopus 로고    scopus 로고
    • An overview of relations among causal modelling methods
    • Greenland S, Brumback B (2002) An overview of relations among causal modelling methods. Int J Epidemiol 31:1030-1037
    • (2002) Int J Epidemiol , vol.31 , pp. 1030-1037
    • Greenland, S.1    Brumback, B.2
  • 36
    • 0032924944 scopus 로고    scopus 로고
    • Causal diagrams for epidemiologic research
    • Greenland S, Pearl J, Robins JM (1999) Causal diagrams for epidemiologic research. Epidemiology 10:37-48
    • (1999) Epidemiology , vol.10 , pp. 37-48
    • Greenland, S.1    Pearl, J.2    Robins, J.M.3
  • 37
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • Jordan M (ed), MIT, Cambridge
    • Heckerman D (1999) A tutorial on learning with Bayesian networks. In: Jordan M (ed) Learning in graphical models. MIT, Cambridge, pp 301-354
    • (1999) Learning in graphical models , pp. 301-354
    • Heckerman, D.1
  • 38
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • Heckerman D, Geiger D, Chickering DM (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20:197-243
    • (1995) Mach Learn , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 39
    • 33748106661 scopus 로고    scopus 로고
    • Instruments for causal inference: an epidemiologist's dream?
    • Hernán MA, Robins JM (2006) Instruments for causal inference: an epidemiologist's dream? Epidemiology 17:360-372
    • (2006) Epidemiology , vol.17 , pp. 360-372
    • Hernán, M.A.1    Robins, J.M.2
  • 40
    • 0037080447 scopus 로고    scopus 로고
    • Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology
    • Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA (2002) Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol 155:176-184
    • (2002) Am J Epidemiol , vol.155 , pp. 176-184
    • Hernán, M.A.1    Hernández-Díaz, S.2    Werler, M.M.3    Mitchell, A.A.4
  • 42
    • 84859316945 scopus 로고    scopus 로고
    • Graphical independence networks with the gRain package for R
    • Højsgaard S (2012) Graphical independence networks with the gRain package for R. J Stat Softw 46:1-26
    • (2012) J Stat Softw , vol.46 , pp. 1-26
    • Højsgaard, S.1
  • 44
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19:2271-2282
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 45
    • 30544451226 scopus 로고    scopus 로고
    • Probabilistic modeling in bioinformatics and medical informatics
    • Springer, London
    • Husmeier D (2005) Probabilistic modeling in bioinformatics and medical informatics. Springer, London
    • (2005)
    • Husmeier, D.1
  • 46
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • Imoto S, Goto T, Miyano S (2002) Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pac Symp Biocomput 7:175-186
    • (2002) Pac Symp Biocomput , vol.7 , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 47
    • 3042698613 scopus 로고    scopus 로고
    • Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
    • Imoto S, Kim S, Goto T, Miyano S, Aburatani S, Tashiro K, Kuhara S (2003) Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J Bioinform Comput Biol 1:231-252
    • (2003) J Bioinform Comput Biol , vol.1 , pp. 231-252
    • Imoto, S.1    Kim, S.2    Goto, T.3    Miyano, S.4    Aburatani, S.5    Tashiro, K.6    Kuhara, S.7
  • 48
    • 0003448310 scopus 로고    scopus 로고
    • Bayesian networks and decision graphs
    • Springer, New York
    • Jensen FV, Nielsen TD (2007) Bayesian networks and decision graphs. Springer, New York
    • (2007)
    • Jensen, F.V.1    Nielsen, T.D.2
  • 49
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • Kalisch M, Bühlmann P (2007) Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J Mach Learn Res 8:613-636
    • (2007) J Mach Learn Res , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 52
    • 45849150388 scopus 로고    scopus 로고
    • Bayesian networks and influence diagrams: a guide to construction and analysis
    • Springer, New York
    • Kjærulff UB, Madsen AL (2008) Bayesian networks and influence diagrams: a guide to construction and analysis. Springer, New York
    • (2008)
    • Kjærulff, U.B.1    Madsen, A.L.2
  • 53
    • 85026226466 scopus 로고    scopus 로고
    • DAG program
    • Accessed 3 Oct 2012
    • Knüppel S (2011) DAG program. http://epi.dife.de/dag/. Accessed 3 Oct 2012
    • (2011)
    • Knüppel, S.1
  • 54
    • 73849088421 scopus 로고    scopus 로고
    • DAG program: identifying minimal sufficient adjustment sets
    • Knüppel S, Stang A (2010) DAG program: identifying minimal sufficient adjustment sets. Epidemiology 21:159
    • (2010) Epidemiology , vol.21 , pp. 159
    • Knüppel, S.1    Stang, A.2
  • 55
    • 70649111792 scopus 로고    scopus 로고
    • Probabilistic graphical models: principles and techniques
    • MIT, Cambridge
    • Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT, Cambridge
    • (2009)
    • Koller, D.1    Friedman, N.2
  • 56
    • 4043177120 scopus 로고    scopus 로고
    • Bayesian artificial intelligence
    • 2nd edn. CRC, Boca Raton
    • Korb KB, Nicholson AE (2011) Bayesian artificial intelligence. 2nd edn. CRC, Boca Raton
    • (2011)
    • Korb, K.B.1    Nicholson, A.E.2
  • 57
    • 0004047518 scopus 로고
    • Graphical models
    • Clarendon, Oxford
    • Lauritzen SL (1990) Graphical models. Clarendon, Oxford
    • (1990)
    • Lauritzen, S.L.1
  • 58
    • 84950442428 scopus 로고
    • Propagation of probabilities, means, and variances in mixed graphical association models
    • Lauritzen SL (1992) Propagation of probabilities, means, and variances in mixed graphical association models. J Am Stat Assoc 87:1098-1108
    • (1992) J Am Stat Assoc , vol.87 , pp. 1098-1108
    • Lauritzen, S.L.1
  • 59
    • 58149210716 scopus 로고
    • The EM algorithm for graphical association models with missing data
    • Lauritzen SL (1995) The EM algorithm for graphical association models with missing data. Comput Stat Data An 19:191-201
    • (1995) Comput Stat Data An , vol.19 , pp. 191-201
    • Lauritzen, S.L.1
  • 60
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Lauritzen SL, Spiegelhalter DJ (1988) Local computations with probabilities on graphical structures and their application to expert systems. J Roy Stat Soc B 50:157-224
    • (1988) J Roy Stat Soc B , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 62
    • 61749097205 scopus 로고    scopus 로고
    • Controlling the false discovery rate of the association/causality structure learned with the PC algorithm
    • Li J, Wang ZJ (2009) Controlling the false discovery rate of the association/causality structure learned with the PC algorithm. J Mach Learn Res 10:475-514
    • (2009) J Mach Learn Res , vol.10 , pp. 475-514
    • Li, J.1    Wang, Z.J.2
  • 63
    • 84877065956 scopus 로고    scopus 로고
    • Empirical evaluation of scoring functions for Bayesian network model selection
    • Liu Z, Malone B, Yuan C (2012) Empirical evaluation of scoring functions for Bayesian network model selection. BMC Bioinform 13:S14
    • (2012) BMC Bioinform , vol.13 , pp. S14
    • Liu, Z.1    Malone, B.2    Yuan, C.3
  • 64
    • 70449411807 scopus 로고    scopus 로고
    • The BUGS project: evolution, critique and future directions
    • Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions. Stat Med 28:3049-3067
    • (2009) Stat Med , vol.28 , pp. 3049-3067
    • Lunn, D.1    Spiegelhalter, D.2    Thomas, A.3    Best, N.4
  • 66
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks - a review
    • Markowetz F, Spang R (2007) Inferring cellular networks - a review. BMC Bioinform 8(Suppl 6):S5
    • (2007) BMC Bioinform , vol.8 , pp. S5
    • Markowetz, F.1    Spang, R.2
  • 67
    • 84937428461 scopus 로고    scopus 로고
    • Mixtures of truncated exponentials in hybrid Bayesian networks
    • Benferhat S, Besnard P (eds), Lecture notes in computer science, vol 2143. Springer, Berlin
    • Moral S, Rumí R, Salmeó A (2001) Mixtures of truncated exponentials in hybrid Bayesian networks. In: Benferhat S, Besnard P (eds) Symbolic and quantitative approaches to reasoning with uncertainty. Lecture notes in computer science, vol 2143. Springer, Berlin, pp 156-167
    • (2001) Symbolic and quantitative approaches to reasoning with uncertainty , pp. 156-167
    • Moral, S.1    Rumí, R.2    Salmeó, A.3
  • 68
    • 62249132926 scopus 로고    scopus 로고
    • Software for graphical models: a review
    • Murphy K (2007) Software for graphical models: a review. ISBA Bull 14:13-15
    • (2007) ISBA Bull , vol.14 , pp. 13-15
    • Murphy, K.1
  • 69
    • 35148892795 scopus 로고    scopus 로고
    • Software packages for graphical models/Bayesian networks
    • Accessed 15 Aug 2012
    • Murphy K (2012) Software packages for graphical models/Bayesian networks. http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html. Accessed 15 Aug 2012
    • (2012)
    • Murphy, K.1
  • 70
    • 84555187603 scopus 로고    scopus 로고
    • Emergency department triaging of admitted stroke patients - a Bayesian network analysis
    • Nadathur SG, Warren JR (2011) Emergency department triaging of admitted stroke patients - a Bayesian network analysis. Health Inform J 17:294-312
    • (2011) Health Inform J , vol.17 , pp. 294-312
    • Nadathur, S.G.1    Warren, J.R.2
  • 71
    • 84908883654 scopus 로고    scopus 로고
    • Using Bayesian networks to model hierarchical relationships in epidemiological studies
    • Nguefack-Tsague G (2011) Using Bayesian networks to model hierarchical relationships in epidemiological studies. Epidemiol Health 33:e2011006
    • (2011) Epidemiol Health , vol.33 , pp. e2011006
    • Nguefack-Tsague, G.1
  • 72
    • 0003398906 scopus 로고    scopus 로고
    • Causality - models, reasoning and inference
    • 2nd edn. Cambridge University Press, Cambridge
    • Pearl J (2009) Causality - models, reasoning and inference. 2nd edn. Cambridge University Press, Cambridge
    • (2009)
    • Pearl, J.1
  • 73
    • 84863304598 scopus 로고    scopus 로고
    • R: a language and environment for statistical computing
    • R Foundation for Statistical Computing, Vienna, Accessed 15 Aug 2012
    • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 15 Aug 2012
    • (2012)
  • 74
    • 85026274010 scopus 로고    scopus 로고
    • Bootstrapping the PC and CPC algorithms to improve search accuracy
    • Tech Rep 101, Department of Philosophy, Carnegie Mellon University, Accessed 15 Aug 2012
    • Ramsey J (2010) Bootstrapping the PC and CPC algorithms to improve search accuracy. Tech Rep 101, Department of Philosophy, Carnegie Mellon University. http://repository.cmu.edu/philosophy/101. Accessed 15 Aug 2012
    • (2010)
    • Ramsey, J.1
  • 76
    • 0035063108 scopus 로고    scopus 로고
    • Data, design, and background knowledge in etiologic inference
    • Robins JM (2001) Data, design, and background knowledge in etiologic inference. Epidemiology 12:313-320
    • (2001) Epidemiology , vol.12 , pp. 313-320
    • Robins, J.M.1
  • 77
    • 0026643893 scopus 로고
    • G-estimation of the effect of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of aids patients
    • Robins JM, Blevins D, Ritter G, Wulfsohn M (1992) G-estimation of the effect of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of aids patients. Epidemiology 3:319-336
    • (1992) Epidemiology , vol.3 , pp. 319-336
    • Robins, J.M.1    Blevins, D.2    Ritter, G.3    Wulfsohn, M.4
  • 78
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins JM, Hernán MA, Brumback B (2000) Marginal structural models and causal inference in epidemiology. Epidemiology 11:550-560
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.M.1    Hernán, M.A.2    Brumback, B.3
  • 80
    • 0002444961 scopus 로고
    • Counting unlabeled acyclic digraphs
    • Little H (ed), Lecture notes in mathematics, vol 622. Springer, Berlin
    • Robinson R (1977) Counting unlabeled acyclic digraphs. In: Little H (ed) Combinatorial mathematics V. Lecture notes in mathematics, vol 622. Springer, Berlin, pp 28-43
    • (1977) Combinatorial mathematics V , pp. 28-43
    • Robinson, R.1
  • 82
    • 0004292914 scopus 로고    scopus 로고
    • Modern epidemiology
    • 3rd edn. Lippincott Williams & Wilkins, Philadelphia
    • Rothman KJ, Greenland S, Lash T (2008) Modern epidemiology. 3rd edn. Lippincott Williams & Wilkins, Philadelphia
    • (2008)
    • Rothman, K.J.1    Greenland, S.2    Lash, T.3
  • 83
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin D (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol 66:688-701
    • (1974) J Educ Psychol , vol.66 , pp. 688-701
    • Rubin, D.1
  • 84
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian networks with the bnlearn R package
    • Scutari M (2010) Learning Bayesian networks with the bnlearn R package. J Stat Softw 35:1-22
    • (2010) J Stat Softw , vol.35 , pp. 1-22
    • Scutari, M.1
  • 85
    • 79960135064 scopus 로고    scopus 로고
    • A re-definition of mixtures of polynomials for inference in hybrid Bayesian networks
    • Liu W (ed), Lecture notes in computer science, vol 6717. Springer, Berlin
    • Shenoy PP (2011) A re-definition of mixtures of polynomials for inference in hybrid Bayesian networks. In: Liu W (ed) Symbolic and quantitative approaches to reasoning with uncertainty. Lecture notes in computer science, vol 6717. Springer, Berlin, pp 98-109
    • (2011) Symbolic and quantitative approaches to reasoning with uncertainty , pp. 98-109
    • Shenoy, P.P.1
  • 86
    • 57649138547 scopus 로고    scopus 로고
    • Reducing bias through directed acyclic graphs
    • Shrier I, Platt RW (2008) Reducing bias through directed acyclic graphs. BMC Med Res Methodol 8:70
    • (2008) BMC Med Res Methodol , vol.8 , pp. 70
    • Shrier, I.1    Platt, R.W.2
  • 87
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • Spiegelhalter DJ, Lauritzen SL (1990) Sequential updating of conditional probabilities on directed graphical structures. Networks 20:579-605
    • (1990) Networks , vol.20 , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 88
    • 68349087665 scopus 로고
    • An algorithm for fast recovery of sparse causal graphs
    • Report CMU-PHIL-15, Department of Philosophy, Carnegie Mellon University
    • Spirtes P, Glymour C (1990) An algorithm for fast recovery of sparse causal graphs. Report CMU-PHIL-15, Department of Philosophy, Carnegie Mellon University
    • (1990)
    • Spirtes, P.1    Glymour, C.2
  • 90
    • 0003614273 scopus 로고    scopus 로고
    • Causation, prediction and search, 2nd edn
    • MIT, Cambridge
    • Spirtes P, Glymour C, Scheines R (2001) Causation, prediction and search, 2nd edn. MIT, Cambridge
    • (2001)
    • Spirtes, P.1    Glymour, C.2    Scheines, R.3
  • 91
    • 70449516824 scopus 로고    scopus 로고
    • Conditional independence relations among biological markers may improve clinical decision as in the case of triple negative breast cancers
    • Stefanini FM, Coradini D, Biganzoli E (2009) Conditional independence relations among biological markers may improve clinical decision as in the case of triple negative breast cancers. BMC Bioinform 10(Suppl 12):S13
    • (2009) BMC Bioinform , vol.10 , pp. S13
    • Stefanini, F.M.1    Coradini, D.2    Biganzoli, E.3
  • 92
    • 85026241363 scopus 로고    scopus 로고
    • DAGitty v.10
    • Accessed 3 Oct 2012
    • Textor J (2012) DAGitty v.10. http://www.dagitty.net/. Accessed 3 Oct 2012
    • (2012)
    • Textor, J.1
  • 93
    • 80051499209 scopus 로고    scopus 로고
    • DAGitty: a graphical tool for analyzing causal diagrams
    • Textor J, Hardt J, Knüppel S (2011) DAGitty: a graphical tool for analyzing causal diagrams. Epidemiology 5:745
    • (2011) Epidemiology , vol.5 , pp. 745
    • Textor, J.1    Hardt, J.2    Knüppel, S.3
  • 94
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos I, Brown LE, Aliferis CF (2006) The max-min hill-climbing Bayesian network structure learning algorithm. Mach Learn 65:31-78
    • (2006) Mach Learn , vol.65 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 95
    • 35348924310 scopus 로고    scopus 로고
    • Directed acyclic graphs, sufficient causes, and the properties of conditioning on a common effect
    • VanderWeele TJ, Robins JM (2007a) Directed acyclic graphs, sufficient causes, and the properties of conditioning on a common effect. Am J Epidemiol 166:1096-1104
    • (2007) Am J Epidemiol , vol.166 , pp. 1096-1104
    • VanderWeele, T.J.1    Robins, J.M.2
  • 96
    • 34547924073 scopus 로고    scopus 로고
    • Four types of effect modification: a classification based on directed acyclic graphs
    • VanderWeele TJ, Robins JM (2007b) Four types of effect modification: a classification based on directed acyclic graphs. Epidemiology 18:561-568
    • (2007) Epidemiology , vol.18 , pp. 561-568
    • VanderWeele, T.J.1    Robins, J.M.2
  • 98
    • 0001775899 scopus 로고
    • An algorithm for deciding if a set of observed independencies has a causal explanation
    • Dubois D, Wellman MP, D'Ambrosio B, Smets P (eds), Morgan Kaufmann, San Mateo
    • Verma T, Pearl J (1992) An algorithm for deciding if a set of observed independencies has a causal explanation. In: Dubois D, Wellman MP, D'Ambrosio B, Smets P (eds) Proceedings of the eighth conference on uncertainty in artificial intelligence (UAI-92). Morgan Kaufmann, San Mateo, pp 323-330
    • (1992) Proceedings of the eighth conference on uncertainty in artificial intelligence (UAI-92) , pp. 323-330
    • Verma, T.1    Pearl, J.2
  • 99
    • 34948816667 scopus 로고    scopus 로고
    • A hybrid Bayesian network learning method for constructing gene networks
    • Wang M, Chen Z, Cloutier S (2007) A hybrid Bayesian network learning method for constructing gene networks. Comput Biol Chem 31:361-372
    • (2007) Comput Biol Chem , vol.31 , pp. 361-372
    • Wang, M.1    Chen, Z.2    Cloutier, S.3
  • 100
    • 0027468093 scopus 로고
    • Toward a clearer definition of confounding
    • Weinberg CR (1993) Toward a clearer definition of confounding. Am J Epidemiol 137:1-8
    • (1993) Am J Epidemiol , vol.137 , pp. 1-8
    • Weinberg, C.R.1
  • 101
    • 34547905708 scopus 로고    scopus 로고
    • Can DAGs clarify effect modification?
    • Weinberg CR (2007) Can DAGs clarify effect modification? Epidemiology 18:569-572
    • (2007) Epidemiology , vol.18 , pp. 569-572
    • Weinberg, C.R.1
  • 102
    • 4444358530 scopus 로고    scopus 로고
    • A hybrid approach to discover Bayesian networks from databases using evolutionary programming
    • ICDM '02. IEEE Computer Society, Los Alamitos
    • Wong ML, Lee SY, Leung KS (2002) A hybrid approach to discover Bayesian networks from databases using evolutionary programming. In: Proceedings of the 2002 IEEE international conference on data mining, ICDM '02. IEEE Computer Society, Los Alamitos, pp 498-505
    • (2002) Proceedings of the 2002 IEEE international conference on data mining , pp. 498-505
    • Wong, M.L.1    Lee, S.Y.2    Leung, K.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.