메뉴 건너뛰기




Volumn 53, Issue 12, 2010, Pages 80-90

Bayesian networks

Author keywords

[No Author keywords available]

Indexed keywords

DISTRIBUTED PARAMETER NETWORKS; INFERENCE ENGINES; INTELLIGENT NETWORKS;

EID: 78650115042     PISSN: 00010782     EISSN: 15577317     Source Type: Journal    
DOI: 10.1145/1859204.1859227     Document Type: Review
Times cited : (111)

References (36)
  • 1
    • 0001185873 scopus 로고
    • An essay towards solving a problem in the doctrine of chances
    • Reproduced in W.E. Deming
    • Bayes, T. An essay towards solving a problem in the doctrine of chances. Phil. Trans. 3 (1963), 370-418. Reproduced in W.E. Deming.
    • (1963) Phil. Trans. , vol.3 , pp. 370-418
    • Bayes, T.1
  • 6
    • 0035250750 scopus 로고    scopus 로고
    • Recursive conditioning
    • D arwiche, A. Recursive conditioning. Artificial Intelligence 126, 1-2 (2001), 5-41.
    • (2001) Artificial Intelligence , vol.126 , Issue.1-2 , pp. 5-41
    • Darwiche, A.1
  • 7
    • 1642413218 scopus 로고    scopus 로고
    • A differential approach to inference in Bayesian networks
    • Darwiche, A. A differential approach to inference in Bayesian networks. Journal of the ACM 50, 3 (2003).
    • (2003) Journal of the ACM , vol.50 , pp. 3
    • Darwiche, A.1
  • 9
    • 84990553353 scopus 로고
    • A model for reasoning about persistence and causation
    • Dean, T. and Kanazawa, K. A model for reasoning about persistence and causation. Computational Intelligence 5, 3 (1989), 142-150.
    • (1989) Computational Intelligence , vol.5 , Issue.3 , pp. 142-150
    • Dean, T.1    Kanazawa, K.2
  • 12
    • 0038558013 scopus 로고    scopus 로고
    • Exact genetic linkage computations for general pedigrees
    • Fishelson, M. and Geiger, D. Exact genetic linkage computations for general pedigrees. Bioinformatics 18, 1 (2002), 189-198.
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 189-198
    • Fishelson, M.1    Geiger, D.2
  • 16
    • 0004194893 scopus 로고    scopus 로고
    • Glymour, C., Cooper, G. eds. MIT Press, Cambridge, MA
    • Glymour, C. and Cooper, G. eds. Computation, Causation, and Discovery. MIT Press, Cambridge, MA, 1999.
    • (1999) Computation, Causation, and Discovery
  • 17
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • Kluwer
    • Heckerman, D. A tutorial on learning with Bayesian networks. Learning in Graphical Models. Kluwer, 1998, 301-354.
    • (1998) Learning in Graphical Models , pp. 301-354
    • Heckerman, D.1
  • 19
    • 4043084564 scopus 로고    scopus 로고
    • Tutorial on variational approximation methods
    • D. Saad and M. Opper, ed, MIT Press, Cambridge, MA
    • J aakkola, T. Tutorial on variational approximation methods. Advanced Mean Field Methods. D. Saad and M. Opper, ed, MIT Press, Cambridge, MA , 2001, 129-160.
    • (2001) Advanced Mean Field Methods , pp. 129-160
    • Jaakkola, T.1
  • 21
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, M., Ghahramani, Z., Jaakkola, T. and Saul, L. An introduction to variational methods for graphical models. Machine Learning 37, 2 (1999), 183-233.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 24
    • 0001006209 scopus 로고    scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Lauritzen, S.L. and Spiegelhalter, D.J. Local computations with probabilities on graphical structures and their application to expert systems. Journal of Royal Statistics Society, Series B 50, 2 (1998), 157-224.
    • (1998) Journal of Royal Statistics Society, Series B , vol.50 , Issue.2 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 27
    • 78650165778 scopus 로고    scopus 로고
    • Learning bayesian networks
    • Prentice Hall, Englewood, NJ
    • Neapolitan, R. Learning Bayesian Networks. Prentice Hall, Englewood, NJ , 2004.
    • (2004) Neapolitan R.
  • 28
    • 51249104199 scopus 로고
    • Bayesian networks: A model of selfactivated memory for evidential reasoning
    • Pearl, J. Bayesian networks: A model of selfactivated memory for evidential reasoning. In Proceedings of the Cognitive Science Society (1985), 329-334.
    • (1985) Proceedings of the Cognitive Science Society , pp. 329-334
    • Pearl, J.1
  • 32
    • 0031568356 scopus 로고    scopus 로고
    • Probabilistic independence networks for hidden Markov probability models
    • Smyth, P., Heckerman, D. and Jordan, M. Probabilistic independence networks for hidden Markov probability models. Neural Computation 9, 2 (1997), 227-269.
    • (1997) Neural Computation , vol.9 , Issue.2 , pp. 227-269
    • Smyth, P.1    Heckerman, D.2    Jordan, M.3
  • 33
    • 85145541793 scopus 로고    scopus 로고
    • Probabilistic topic models
    • T. K. Landauer, D. S. McNamara, S. Dennis, and W. Kintsch, eds
    • Steyvers, M. and Griffiths, T. Probabilistic topic models. Handbook of Latent Semantic Analysis. T. K. Landauer, D. S. McNamara, S. Dennis, and W. Kintsch, eds. 2007, 427-448.
    • (2007) Handbook of Latent Semantic Analysis , pp. 427-448
    • Steyvers, M.1    Griffiths, T.2
  • 35
    • 23744513375 scopus 로고    scopus 로고
    • Constructing free-energy approximations and generalized belief propagation algorithms
    • Y edidia, J., Freeman, W. and Weiss, Y. Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory 1, 7 (2005), 2282-2312.
    • (2005) IEEE Transactions on Information Theory , vol.1 , Issue.7 , pp. 2282-2312
    • Yedidia, J.1    Freeman, W.2    Weiss, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.