메뉴 건너뛰기




Volumn 113, Issue 1, 2015, Pages 54-66

Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition

Author keywords

Convolutional neural networks; Deep learning; Machine learning; Neuromorphic circuits; Object recognition; Spiking neural networks

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONVOLUTION; ENERGY EFFICIENCY; HARDWARE; LEARNING SYSTEMS; LOW POWER ELECTRONICS; MAPPING; NETWORKS (CIRCUITS); NEURAL NETWORKS; OBJECT RECOGNITION;

EID: 84939942807     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-014-0788-3     Document Type: Article
Times cited : (915)

References (42)
  • 3
    • 80053019689 scopus 로고    scopus 로고
    • How does the brain rapidly learn and reorganize view-invariant and position-invariant object representations in the inferotemporal cortex?
    • Cao, Y., Grossberg, S., & Markowitz, J. (2011). How does the brain rapidly learn and reorganize view-invariant and position-invariant object representations in the inferotemporal cortex? Neural Networks, 24(10), 1050–1061.
    • (2011) Neural Networks , vol.24 , Issue.10 , pp. 1050-1061
    • Cao, Y.1    Grossberg, S.2    Markowitz, J.3
  • 4
    • 84855920586 scopus 로고    scopus 로고
    • Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: A method for converting neural rate models into spiking models
    • Cao, Y., & Grossberg, S. (2012). Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: A method for converting neural rate models into spiking models. Neural Networks, 26, 75–98.
    • (2012) Neural Networks , vol.26 , pp. 75-98
    • Cao, Y.1    Grossberg, S.2
  • 5
    • 84893625868 scopus 로고    scopus 로고
    • Cognitive computing building block: A versatile and efficient digital neuron model for neurosynaptic cores. In: The 2013 International Joint Conference on Neural Networks (IJCNN), (pp
    • Cassidy, A.S., Merolla, P., Arthur, J.V., Esser, S.K., Jackson, B., Alvarez-Icaza, R., & Modha, D.S. (2013). Cognitive computing building block: A versatile and efficient digital neuron model for neurosynaptic cores. In: The 2013 International Joint Conference on Neural Networks (IJCNN), (pp. 1–10).
    • (2013) 1–10)
    • Cassidy, A.S.1    Merolla, P.2    Arthur, J.V.3    Esser, S.K.4    Jackson, B.5    Alvarez-Icaza, R.6    Modha, D.S.7
  • 6
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp
    • Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3642–3649).
    • (2012) 3642–3649)
    • Ciresan, D.1    Meier, U.2    Schmidhuber, J.3
  • 7
    • 84888340666 scopus 로고    scopus 로고
    • Torch7: A matlab-like environment for machine learning
    • BigLearn, NIPS Workshop:
    • Collobert, R., Kavukcuoglu, K., & Farabet, C. (2011). Torch7: A matlab-like environment for machine learning. In: BigLearn, NIPS Workshop.
    • (2011) In
    • Collobert, R.1    Kavukcuoglu, K.2    Farabet, C.3
  • 9
    • 84977771266 scopus 로고    scopus 로고
    • (DARPA) (2011), “Neovision2 Evaluation Results
    • Defense Advanced Research Projects Agency (DARPA) (2011), “Neovision2 Evaluation Results”, DISTAR Case Number 18620, December 22, 2011.
    • (2011) DISTAR Case Number 18620, December , pp. 22
    • Agency, D.A.R.P.1
  • 11
    • 84939942274 scopus 로고    scopus 로고
    • Farabet, C. (2013), Towards real-time image understanding with convolutional neural networks, Ph.D. Thesis, Universit’e Paris-Est, Dec. 19
    • Farabet, C. (2013), Towards real-time image understanding with convolutional neural networks, Ph.D. Thesis, Universit’e Paris-Est, Dec. 19, 2013 (http://pub.clement.farabet.net/thesis.pdf, accessed July 10, 2014).
  • 13
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 14
    • 0023846591 scopus 로고
    • Neocognitron: A hierarchical neural network capable of visual pattern recognition
    • Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks, 1(2), 119–130.
    • (1988) Neural Networks , vol.1 , Issue.2 , pp. 119-130
    • Fukushima, K.1
  • 15
    • 55549147144 scopus 로고    scopus 로고
    • View-invariant object category learning, recognition, and search: How spatial and object attention are coordinated using surface-based attentional shrouds
    • Fazl, A., Grossberg, S., & Mingolla, E. (2009). View-invariant object category learning, recognition, and search: How spatial and object attention are coordinated using surface-based attentional shrouds. Cognitive Psychology, 58(1), 1–48.
    • (2009) Cognitive Psychology , vol.58 , Issue.1 , pp. 1-48
    • Fazl, A.1    Grossberg, S.2    Mingolla, E.3
  • 16
    • 80054778974 scopus 로고    scopus 로고
    • On the road to invariant recognition: explaining tradeoff and morph properties of cells in inferotemporal cortex using multiple-scale task-sensitive attentive learning
    • Grossberg, S., Markowitz, J., & Cao, Y. (2011). On the road to invariant recognition: explaining tradeoff and morph properties of cells in inferotemporal cortex using multiple-scale task-sensitive attentive learning. Neural Networks, 24(10), 1036–1049.
    • (2011) Neural Networks , vol.24 , Issue.10 , pp. 1036-1049
    • Grossberg, S.1    Markowitz, J.2    Cao, Y.3
  • 17
    • 64949143219 scopus 로고    scopus 로고
    • ARTSCENE: A neural system for natural scene classification
    • Grossberg, S., & Huang, T.-R. (2009). ARTSCENE: A neural system for natural scene classification. Journal of Vision, 9(4), 6:1–19, doi:10.1167/9.4.6.
    • (2009) Journal of Vision, 9(4) , vol.6 , pp. 1-19
    • Grossberg, S.1    Huang, T.-R.2
  • 18
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504–507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 19
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., & Teh, Y. (2006a). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 20
    • 33748852900 scopus 로고    scopus 로고
    • Unsupervised discovery of non-linear structure using contrastive backpropagation
    • Hinton, G. E., Osindero, S., Welling, M., & Teh, Y. (2006b). Unsupervised discovery of non-linear structure using contrastive backpropagation. Cognitive Science, 30(4), 725–731.
    • (2006) Cognitive Science , vol.30 , Issue.4 , pp. 725-731
    • Hinton, G.E.1    Osindero, S.2    Welling, M.3    Teh, Y.4
  • 21
    • 84939999880 scopus 로고    scopus 로고
    • Ho, N. (2013). Convolutional neural network and CIFAR-10, part-3, July 7, 2013
    • Ho, N. (2013). Convolutional neural network and CIFAR-10, part-3, http://nghiaho.com/?p=1997, July 7, 2013.
  • 22
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cat’s striate cortex
    • Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology, 148(3), 574–591.
    • (1959) The Journal of Physiology , vol.148 , Issue.3 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 23
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
    • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106–154.
    • (1962) The Journal of Physiology , vol.160 , Issue.1 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.N.2
  • 24
    • 84939991656 scopus 로고    scopus 로고
    • Itti, L. (2013). Neovision2 annotated video datasets
    • Itti, L. (2013). Neovision2 annotated video datasets. http://ilab.usc.edu/neo2/dataset/, accessed July 10, 2014.
  • 27
    • 84881046230 scopus 로고    scopus 로고
    • Real-time, low-power neuromorphic hardware for autonomous object recognition. Proc. SPIE 8713, Airborne Intelligence, Surveillance
    • Khosla, D., Chen, Y., Huber, D., Van Buer, D., & Kim, K. (2013b). Real-time, low-power neuromorphic hardware for autonomous object recognition. Proc. SPIE 8713, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications X: 871313.
    • (2013) Reconnaissance (ISR) Systems and Applications , vol.10
    • Khosla, D.1    Chen, Y.2    Huber, D.3    Van Buer, D.4    Kim, K.5
  • 28
    • 84939980396 scopus 로고    scopus 로고
    • Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images, MSc thesis, Univ. of Toronto, Dept. of Computer Science, 2009
    • Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images, MSc thesis, Univ. of Toronto, Dept. of Computer Science, 2009. (Also see http://www.cs.toronto.edu/~kriz/cifar.html for CIFAR-10 image data sets).
  • 29
    • 84939959117 scopus 로고    scopus 로고
    • Krizhevskey, A. (2012). Cuda-ConvNet, accessed July 10, 2014
    • Krizhevskey, A. (2012). Cuda-ConvNet, http://code.google.com/p/cuda-convnet/, accessed July 10, 2014.
  • 32
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 33
    • 85083953135 scopus 로고    scopus 로고
    • Network in Network, in International Conference on Learning Representation (ICLR2014), Banff, Canada
    • Lin, M., Chen, Q., & Yan, S. (2014). Network in Network, in International Conference on Learning Representation (ICLR2014), Banff, Canada, April 14–16, 2014.
    • (2014) April , vol.2014 , pp. 14-16
    • Lin, M.1    Chen, Q.2    Yan, S.3
  • 34
    • 80455149790 scopus 로고    scopus 로고
    • A digital neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm. In: Custom Integrated Circuits Conference (CICC), 2011 IEEE (pp
    • Merolla, P., Arthur, J., Akopyan, F., Imam, N., Manohar, R., & Modha, D.S. (2011). A digital neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm. In: Custom Integrated Circuits Conference (CICC), 2011 IEEE (pp. 1–4).
    • (2011) 1–4)
    • Merolla, P.1    Arthur, J.2    Akopyan, F.3    Imam, N.4    Manohar, R.5    Modha, D.S.6
  • 35
    • 33847275584 scopus 로고    scopus 로고
    • Unsupervised learning of visual features through spike timing dependent plasticity
    • Masquelier, T., & Thorpe, S. J. (2007). Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Computational Biology, 3, 0247–0257.
    • (2007) PLoS Computational Biology , vol.3 , pp. 0247-0257
    • Masquelier, T.1    Thorpe, S.J.2
  • 36
    • 78149477279 scopus 로고    scopus 로고
    • Spike-based convolutional network for real-time processing. In: 2010 International Conference on Pattern Recognition (pp
    • Perez-Carrasco, J.A., Serrano, C., Acha, B., Serrano-Gotarredona, T., & Linares-Barranco, B. (2010). Spike-based convolutional network for real-time processing. In: 2010 International Conference on Pattern Recognition (pp. 3085–3088).
    • (2010) 3085–3088)
    • Perez-Carrasco, J.A.1    Serrano, C.2    Acha, B.3    Serrano-Gotarredona, T.4    Linares-Barranco, B.5
  • 37
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07) (pp
    • Ranzato, M. A., Huang, F. J., Boureau, Y. L., & LeCun, Y. (2007). Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07) (pp. 1–8).
    • (2007)
    • Ranzato, M.A.1    Huang, F.J.2    Boureau, Y.L.3    LeCun, Y.4
  • 38
    • 84908537903 scopus 로고    scopus 로고
    • Razavian, A.S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN Features off-the-shelf: an Astounding Baseline for Recognition, DeepVision CVPR 2014 Workshop, Columbus, Ohio, June 28, 2014
    • Razavian, A.S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN Features off-the-shelf: an Astounding Baseline for Recognition, http://arxiv.org/abs/1403.6382, DeepVision CVPR 2014 Workshop, Columbus, Ohio, June 28, 2014.
  • 39
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019–1025.
    • (1999) Nature Neuroscience , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 40
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E., Hintont, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hintont, G.E.2    Williams, R.J.3
  • 41
    • 85083951635 scopus 로고    scopus 로고
    • Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R. & LeCun, Y. (2014). “OverFeat: Integrated recognition, localization and detection using convolutional networks”,In International Conference on Learning Representations (ICLR 2014), April 2014
    • Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R. & LeCun, Y. (2014). “OverFeat: Integrated recognition, localization and detection using convolutional networks”,In International Conference on Learning Representations (ICLR 2014), April 2014.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.