메뉴 건너뛰기




Volumn 7, Issue 2, 2015, Pages 226-240

Word Embedding Composition for Data Imbalances in Sentiment and Emotion Classification

Author keywords

Emotion classification; Imbalanced training; Semantic compositionality; Sentiment analysis; Word embedding

Indexed keywords

DATA MINING; SEMANTICS; TEXT PROCESSING;

EID: 84939941491     PISSN: 18669956     EISSN: 18669964     Source Type: Journal    
DOI: 10.1007/s12559-015-9319-y     Document Type: Article
Times cited : (83)

References (43)
  • 1
    • 0004055340 scopus 로고
    • 2, Routledge & Kegan Paul, London & New York:
    • Allan K. Linguistic meaning, vol. 2. London & New York: Routledge & Kegan Paul; 1986.
    • (1986) Linguistic meaning
    • Allan, K.1
  • 2
    • 84891807032 scopus 로고    scopus 로고
    • MWMOTE—majority weighted minority oversampling technique for imbalanced data set learning
    • Barua S, Islam M, Yao X, Murase K, et al. MWMOTE—majority weighted minority oversampling technique for imbalanced data set learning. IEEE Trans Knowl Data Eng. 2014;26(2):405–25.
    • (2014) IEEE Trans Knowl Data Eng , vol.26 , Issue.2 , pp. 405-425
    • Barua, S.1    Islam, M.2    Yao, X.3    Murase, K.4
  • 3
    • 79959407847 scopus 로고    scopus 로고
    • Neural net language models
    • Bengio Y. Neural net language models. Scholarpedia. 2008;3(1):3881.
    • (2008) Scholarpedia , vol.3 , Issue.1 , pp. 3881
    • Bengio, Y.1
  • 7
    • 67650694660 scopus 로고    scopus 로고
    • Safe-level-smote: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
    • Berlin: Springer
    • Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C. Safe-level-smote: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In: Advances in knowledge discovery and data mining. Berlin: Springer; 2009. p. 475–82.
    • (2009) Advances in knowledge discovery and data mining , pp. 475-482
    • Bunkhumpornpat, C.1    Sinapiromsaran, K.2    Lursinsap, C.3
  • 8
    • 84862140885 scopus 로고    scopus 로고
    • DBSMOTE: density-based synthetic minority over-sampling technique
    • Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C. DBSMOTE: density-based synthetic minority over-sampling technique. Appl Intell. 2012;36(3):664–84.
    • (2012) Appl Intell , vol.36 , Issue.3 , pp. 664-684
    • Bunkhumpornpat, C.1    Sinapiromsaran, K.2    Lursinsap, C.3
  • 9
    • 84894596823 scopus 로고    scopus 로고
    • Imbalanced evolving self-organizing learning
    • Cai Q, He H, Man H. Imbalanced evolving self-organizing learning. Neurocomputing. 2014;133:258–70.
    • (2014) Neurocomputing , vol.133 , pp. 258-270
    • Cai, Q.1    He, H.2    Man, H.3
  • 13
    • 84908152207 scopus 로고    scopus 로고
    • SenticNet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis
    • Cambria E, Olsher D, Rajagopal D. SenticNet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis. AAAI. 2014;1515–21.
    • (2014) AAAI , pp. 1515-1521
    • Cambria, E.1    Olsher, D.2    Rajagopal, D.3
  • 14
    • 84880219830 scopus 로고    scopus 로고
    • New avenues in opinion mining and sentiment analysis
    • Cambria E, Schuller B, Xia Y, Havasi C. New avenues in opinion mining and sentiment analysis. IEEE Intell Syst. 2013;28(2):15–21.
    • (2013) IEEE Intell Syst , vol.28 , Issue.2 , pp. 15-21
    • Cambria, E.1    Schuller, B.2    Xia, Y.3    Havasi, C.4
  • 16
    • 50549101751 scopus 로고    scopus 로고
    • Automatically countering imbalance and its empirical relationship to cost
    • Chawla NV, Cieslak DA, Hall LO, Joshi A. Automatically countering imbalance and its empirical relationship to cost. Data Mining Knowl Discov. 2008;17(2):225–52.
    • (2008) Data Mining Knowl Discov , vol.17 , Issue.2 , pp. 225-252
    • Chawla, N.V.1    Cieslak, D.A.2    Hall, L.O.3    Joshi, A.4
  • 17
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla NV, Japkowicz N, Kotcz A. Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explor Newsl. 2004;6(1):1–6.
    • (2004) ACM SIGKDD Explor Newsl , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 19
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of ICML
    • Collobert R, Weston J. A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of ICML. ACM; 2008. p. 160–7.
    • ACM , vol.2008 , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 20
    • 84870472546 scopus 로고    scopus 로고
    • Sentence-level emotion and valence tagging
    • Das D, Bandyopadhyay S. Sentence-level emotion and valence tagging. Cogn Comput. 2012;4(4):420–35.
    • (2012) Cogn Comput , vol.4 , Issue.4 , pp. 420-435
    • Das, D.1    Bandyopadhyay, S.2
  • 21
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of KDD. 1996. p. 226–31.
    • In: Proceedings of KDD , vol.1996 , pp. 226-231
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3    Xu, X.4
  • 22
    • 80052259932 scopus 로고    scopus 로고
    • Sentic web: a new paradigm for managing social media affective information
    • Grassi M, Cambria E, Hussain A, Piazza F. Sentic web: a new paradigm for managing social media affective information. Cogn Comput. 2011;3(3):480–9.
    • (2011) Cogn Comput , vol.3 , Issue.3 , pp. 480-489
    • Grassi, M.1    Cambria, E.2    Hussain, A.3    Piazza, F.4
  • 24
    • 27144501672 scopus 로고    scopus 로고
    • Borderline-smote: a new over-sampling method in imbalanced data sets learning
    • Berlin: Springer
    • Han H, Wang WY, Mao BH. Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: Advances in intelligent computing. Berlin: Springer; 2005. p. 878–87.
    • (2005) Advances in intelligent computing , pp. 878-887
    • Han, H.1    Wang, W.Y.2    Mao, B.H.3
  • 25
    • 56349089205 scopus 로고    scopus 로고
    • Adaptive synthetic sampling approach for imbalanced learning. In: Proceedings of IJCNN
    • He H, Bai Y, Garcia EA, Li S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In: Proceedings of IJCNN. IEEE; 2008. p. 1322–8.
    • IEEE , vol.2008 , pp. 1322-1328
    • He, H.1    Bai, Y.2    Garcia, E.A.3    Li, S.A.D.A.S.Y.N.4
  • 26
    • 0002623785 scopus 로고
    • Learning distributed representations of concepts
    • Amherst: MA
    • Hinton GE. Learning distributed representations of concepts. In: Proceedings of CogSci, vol 1. Amherst, MA; 1986. p. 12.
    • (1986) Proceedings of CogSci , vol.1 , pp. 12
    • Hinton, G.E.1
  • 27
    • 27144540575 scopus 로고    scopus 로고
    • Class imbalances versus small disjuncts
    • Jo T, Japkowicz N. Class imbalances versus small disjuncts. ACM SIGKDD Explor Newsl. 2004;6(1):40–9.
    • (2004) ACM SIGKDD Explor Newsl , vol.6 , Issue.1 , pp. 40-49
    • Jo, T.1    Japkowicz, N.2
  • 28
    • 10044260712 scopus 로고    scopus 로고
    • Is it harder to parse chinese, or the chinese treebank?. In: Proceedings of ACL, vol 1
    • Levy R, Manning C. Is it harder to parse chinese, or the chinese treebank?. In: Proceedings of ACL, vol 1. ACL; 2003.p. 439–46.
    • ACL , vol.2003 , pp. 439-446
    • Levy, R.1    Manning, C.2
  • 29
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics
    • López V, Fernández A, García S, Palade V, Herrera F. An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf Sci. 2013;250:113–41.
    • (2013) Inf Sci , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 34
    • 84859895244 scopus 로고    scopus 로고
    • Exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd annual meeting on association for computational linguistics
    • Pang B, Lee L. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd annual meeting on association for computational linguistics. Association for Computational Linguistics; 2005. p. 115–24.
    • Association for Computational Linguistics , vol.2005 , pp. 115-124
    • Pang, B.1    stars, L.L.S.2
  • 35
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of EMNLP, vol 10
    • Pang B, Lee L, Vaithyanathan S. Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of EMNLP, vol 10. ACL; 2002. p. 79–86.
    • ACL , vol.2002 , pp. 79-86
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 36
    • 0008388269 scopus 로고
    • The principle of semantic compositionality
    • Pelletier FJ. The principle of semantic compositionality. Topoi. 1994;13(1):11–24.
    • (1994) Topoi , vol.13 , Issue.1 , pp. 11-24
    • Pelletier, F.J.1
  • 37
    • 84916205035 scopus 로고    scopus 로고
    • GMM-based evaluation of emotional style transformation in czech and slovak
    • Přibil J, Přibilová A. GMM-based evaluation of emotional style transformation in czech and slovak. Cogn Comput. 2014;6(4):928–939.
    • (2014) Cogn Comput , vol.6 , Issue.4 , pp. 928-939
    • Přibil, J.1    Přibilová, A.2
  • 40
    • 84890121713 scopus 로고    scopus 로고
    • Moral judgment, human motivation, and neural networks
    • Sun R. Moral judgment, human motivation, and neural networks. Cogn Comput. 2013;5(4):566–79.
    • (2013) Cogn Comput , vol.5 , Issue.4 , pp. 566-579
    • Sun, R.1
  • 41
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun Y, Kamel MS, Wong AK, Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn. 2007;40(12):3358–78.
    • (2007) Pattern Recogn , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.3    Wang, Y.4
  • 43
    • 33845501387 scopus 로고    scopus 로고
    • 10 challenging problems in data mining research
    • Yang Q, Wu X. 10 challenging problems in data mining research. Int J Inf Technol Decis Mak. 2006;5(04):597–604.
    • (2006) Int J Inf Technol Decis Mak , vol.5 , Issue.4 , pp. 597-604
    • Yang, Q.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.