메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

Automated adaptive inference of phenomenological dynamical models

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTATION; COMPUTER SIMULATION; DATA SET; EXPERIMENTAL STUDY; NUMERICAL MODEL; PHENOLOGY; SIGNALING; YEAST;

EID: 84939832859     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms9133     Document Type: Article
Times cited : (217)

References (46)
  • 1
    • 0000776769 scopus 로고
    • The role of models in science
    • Rosenblueth, A. & Wiener, N. The role of models in science. Philos. Sci. 12, 316-321 (1945).
    • (1945) Philos. Sci. , vol.12 , pp. 316-321
    • Rosenblueth, A.1    Wiener, N.2
  • 2
    • 58549110646 scopus 로고    scopus 로고
    • How to deal with large models?
    • Hlavacek, W. How to deal with large models? Mol. Syst. Biol. 5, 240 (2009).
    • (2009) Mol. Syst. Biol. , vol.5 , pp. 240
    • Hlavacek, W.1
  • 3
    • 35748977901 scopus 로고    scopus 로고
    • Universally sloppy parameter sensitivities in systems biology models
    • Gutenkunst, R. et al. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3, 1871-1878 (2007).
    • (2007) PLoS Comput. Biol. , vol.3 , pp. 1871-1878
    • Gutenkunst, R.1
  • 7
    • 58849120545 scopus 로고    scopus 로고
    • Proper lumping in systems biology models
    • Dokoumetzidis, A. & Aarons, L. Proper lumping in systems biology models. IET Syst. Biol. 3, 40-51 (2009).
    • (2009) IET Syst. Biol. , vol.3 , pp. 40-51
    • Dokoumetzidis, A.1    Aarons, L.2
  • 8
    • 0001192821 scopus 로고
    • Equations of motion from a data series
    • Crutchfield, J. & McNamara, B. Equations of motion from a data series. Complex Syst. 1, 417-452 (1987).
    • (1987) Complex Syst. , vol.1 , pp. 417-452
    • Crutchfield, J.1    McNamara, B.2
  • 11
    • 68949147577 scopus 로고    scopus 로고
    • Generating coherent patterns of activity from chaotic neural networks
    • Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544-557 (2009).
    • (2009) Neuron , vol.63 , pp. 544-557
    • Sussillo, D.1    Abbott, L.F.2
  • 12
    • 37349116795 scopus 로고    scopus 로고
    • Deriving structure from evolution: Metazoan segmentation
    • François, P., Hakim, V. & Siggia, E. D. Deriving structure from evolution: metazoan segmentation. Mol. Syst. Biol. 3, 154 (2007).
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 154
    • François, P.1    Hakim, V.2    Siggia, E.D.3
  • 13
    • 64249142111 scopus 로고    scopus 로고
    • Distilling free-form natural laws from experimental data
    • Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81-85 (2009).
    • (2009) Science , vol.324 , pp. 81-85
    • Schmidt, M.1    Lipson, H.2
  • 14
    • 80052672907 scopus 로고    scopus 로고
    • Automated refinement and inference of analytical models for metabolic networks
    • Schmidt, M. et al. Automated refinement and inference of analytical models for metabolic networks. Phys. Biol. 8, 055011 (2011).
    • (2011) Phys. Biol. , vol.8 , pp. 055011
    • Schmidt, M.1
  • 15
    • 34247953814 scopus 로고
    • More is different
    • Anderson, P. W. More is different. Science 177, 393-396 (1972).
    • (1972) Science , vol.177 , pp. 393-396
    • Anderson, P.W.1
  • 16
    • 0017185443 scopus 로고
    • Simple mathematical models with very complicated dynamics
    • May, R. Simple mathematical models with very complicated dynamics. Nature 261, 459-467 (1976).
    • (1976) Nature , vol.261 , pp. 459-467
    • May, R.1
  • 17
    • 2942588906 scopus 로고    scopus 로고
    • Mathematical and computational models of immune-receptor signalling
    • Goldstein, B., Faeder, J. & Hlavacek, W. Mathematical and computational models of immune-receptor signalling. Nat. Rev. Immunol. 4, 445-456 (2004).
    • (2004) Nat. Rev. Immunol. , vol.4 , pp. 445-456
    • Goldstein, B.1    Faeder, J.2    Hlavacek, W.3
  • 18
    • 75449108347 scopus 로고    scopus 로고
    • The simplicity of completion time distributions for common complex biochemical processes
    • Bel, G., Munsky, B. & Nemenman, I. The simplicity of completion time distributions for common complex biochemical processes. Phys. Biol. 7, 016003 (2010).
    • (2010) Phys. Biol. , vol.7 , pp. 016003
    • Bel, G.1    Munsky, B.2    Nemenman, I.3
  • 19
    • 80054841161 scopus 로고    scopus 로고
    • Information transduction capacity of noisy biochemical signaling networks
    • Cheong, R., Rhee, A., Wang, Nemenman, I. & Levchenko, A. Information transduction capacity of noisy biochemical signaling networks. Science 334, 354-358 (2011).
    • (2011) Science , vol.334 , pp. 354-358
    • Cheong, R.1    Rhee, A.2    Wang3    Nemenman, I.4    Levchenko, A.5
  • 20
    • 79952633685 scopus 로고    scopus 로고
    • Pattern, growth, and control
    • Lander, A. Pattern, growth, and control. Cell 144, 955-969 (2011).
    • (2011) Cell , vol.144 , pp. 955-969
    • Lander, A.1
  • 21
  • 22
    • 84887297074 scopus 로고    scopus 로고
    • Parameter space compression underlies emergent theories and predictive models
    • Machta, B. B., Chachra, R., Transtrum, M. K. & Sethna, J. P. Parameter space compression underlies emergent theories and predictive models. Science 342, 604-607 (2013).
    • (2013) Science , vol.342 , pp. 604-607
    • Machta, B.B.1    Chachra, R.2    Transtrum, M.K.3    Sethna, J.P.4
  • 23
    • 0141925279 scopus 로고    scopus 로고
    • Process pathway inference via time series analysis
    • Wiggins, C. & Nemenman, I. Process pathway inference via time series analysis. Exp. Mech. 43, 361-370 (2003).
    • (2003) Exp. Mech. , vol.43 , pp. 361-370
    • Wiggins, C.1    Nemenman, I.2
  • 24
    • 84926343784 scopus 로고    scopus 로고
    • Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regression
    • Daniels, B. C. & Nemenman, I. Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regression. PLoS ONE 10, e0119821 (2015).
    • (2015) PLoS ONE , vol.10
    • Daniels, B.C.1    Nemenman, I.2
  • 25
    • 22944440685 scopus 로고    scopus 로고
    • Fluctuation-dissipation theorem and models of learning
    • Nemenman, I. Fluctuation-dissipation theorem and models of learning. Neural. Comput. 17, 2006-2033 (2005).
    • (2005) Neural. Comput. , vol.17 , pp. 2006-2033
    • Nemenman, I.1
  • 27
    • 40749094910 scopus 로고    scopus 로고
    • Bayesian ranking of biochemical system models
    • Vyshemirsky, V. & Girolami, M. Bayesian ranking of biochemical system models. Bioinformatics 24, 833-839 (2008).
    • (2008) Bioinformatics , vol.24 , pp. 833-839
    • Vyshemirsky, V.1    Girolami, M.2
  • 28
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
    • Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R Soc. Interface 6, 187-202 (2009).
    • (2009) J. R Soc. Interface , vol.6 , pp. 187-202
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, A.4    Stumpf, M.5
  • 29
    • 77950841799 scopus 로고    scopus 로고
    • Parameter estimation and model selection in computational biology
    • Lillacci, G. & Khammash, M. Parameter estimation and model selection in computational biology. PLoS Comput. Biol. 6, e1000696 (2010).
    • (2010) PLoS Comput. Biol. , vol.6
    • Lillacci, G.1    Khammash, M.2
  • 30
    • 0342349799 scopus 로고
    • Recasting nonlinear differential equations as S-Systems: A canonical nonlinear form
    • Savageau, M. A. & Voit, E. O. Recasting nonlinear differential equations as S-Systems: a canonical nonlinear form. Math. Biosci. 87, 83-115 (1987).
    • (1987) Math. Biosci. , vol.87 , pp. 83-115
    • Savageau, M.A.1    Voit, E.O.2
  • 31
    • 33845348922 scopus 로고    scopus 로고
    • Parameter space structure of continuous-time recurrent neural networks
    • Beer, R. D. Parameter space structure of continuous-time recurrent neural networks. Neural Comput. 18, 3009-3051 (2006).
    • (2006) Neural Comput. , vol.18 , pp. 3009-3051
    • Beer, R.D.1
  • 32
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • Funahashi, K.-I. & Nakamura, Y. Approximation of dynamical systems by continuous time recurrent neural networks. Neural Networks 6, 801-806 (1993).
    • (1993) Neural Networks , vol.6 , pp. 801-806
    • Funahashi, K.-I.1    Nakamura, Y.2
  • 33
    • 0033747856 scopus 로고    scopus 로고
    • Modeling of continuous time dynamical systems with input by recurrent neural networks
    • Chow, T. W. & Li, X.-D. Modeling of continuous time dynamical systems with input by recurrent neural networks. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 47, 575-578 (2000).
    • (2000) IEEE Trans. Circ. Syst. i Fundam. Theory Appl. , vol.47 , pp. 575-578
    • Chow, T.W.1    Li, X.-D.2
  • 34
    • 33747366698 scopus 로고    scopus 로고
    • Rules for modeling signal-transduction systems
    • Hlavacek, W. S. et al. Rules for modeling signal-transduction systems. Sci. STKE 2006, re6 (2006).
    • (2006) Sci. STKE , vol.2006 , pp. re6
    • Hlavacek, W.S.1
  • 35
    • 0034650451 scopus 로고    scopus 로고
    • Effect of cellular interaction on glycolytic oscillations in yeast: A theoretical investigation
    • Wolf, J. & Heinrich, R. Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation. Biochem. J. 334, 321-334 (2000).
    • (2000) Biochem. J. , vol.334 , pp. 321-334
    • Wolf, J.1    Heinrich, R.2
  • 36
    • 0141527416 scopus 로고    scopus 로고
    • Temperature dependency and temperature compensation in a model of yeast glycolytic oscillations
    • Ruoff, P., Christensen, M., Wolf, J. & Heinrich, R. Temperature dependency and temperature compensation in a model of yeast glycolytic oscillations. Biophys. Chem. 106, 179-192 (2003).
    • (2003) Biophys. Chem. , vol.106 , pp. 179-192
    • Ruoff, P.1    Christensen, M.2    Wolf, J.3    Heinrich, R.4
  • 38
    • 0036662792 scopus 로고    scopus 로고
    • Thermotaxis in Caenorhabditis elegans analyzed by measuring responses to defined thermal stimuli
    • Ryu, W. & Samuel, A. Thermotaxis in Caenorhabditis elegans analyzed by measuring responses to defined thermal stimuli. J. Neurosci. 22, 5727-5733 (2002).
    • (2002) J. Neurosci. , vol.22 , pp. 5727-5733
    • Ryu, W.1    Samuel, A.2
  • 39
    • 25444489027 scopus 로고    scopus 로고
    • Phenotypic diversity, population growth, and information in fluctuating environments
    • Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075-2078 (2005).
    • (2005) Science , vol.309 , pp. 2075-2078
    • Kussell, E.1    Leibler, S.2
  • 40
    • 0035490184 scopus 로고    scopus 로고
    • The rat approximates an ideal detector of changes in rates of reward: Implications for the law of effect
    • Gallistel, C., Mark, T., King, A. & Latham, P. The rat approximates an ideal detector of changes in rates of reward: implications for the law of effect. J. Exp. Psychol. Anim. Behav. Process 27, 354-372 (2001).
    • (2001) J. Exp. Psychol. Anim. Behav. Process , vol.27 , pp. 354-372
    • Gallistel, C.1    Mark, T.2    King, A.3    Latham, P.4
  • 41
    • 67649239077 scopus 로고    scopus 로고
    • Machines fall short of revolutionary science
    • Anderson, P. W. & Abrahams, E. Machines fall short of revolutionary science. Science 324, 1515-1516 (2009).
    • (2009) Science , vol.324 , pp. 1515-1516
    • Anderson, P.W.1    Abrahams, E.2
  • 42
    • 33645916042 scopus 로고
    • Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture
    • Wilson, K. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4, 3174-3183 (1971).
    • (1971) Phys. Rev. B , vol.4 , pp. 3174-3183
    • Wilson, K.1
  • 45
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D., Hinton, G. & Williams, R. Learning representations by back-propagating errors. Nature 323, 533-536 (1986).
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 46
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. Estimating the dimension of a model. Annal. Stat. 6, 461-464 (1978).
    • (1978) Annal. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.