메뉴 건너뛰기




Volumn 39, Issue 6, 2015, Pages 439-445

Contemporary Considerations for Constructing a Genetic Risk Score: An Empirical Approach

Author keywords

Coronary heart disease; Risk assessment; Risk score

Indexed keywords

ADULT; ARTICLE; ATHEROSCLEROSIS; COHORT ANALYSIS; CONGENITAL HEART DISEASE; CONTROLLED STUDY; CORONARY ARTERY DISEASE; DIASTOLIC BLOOD PRESSURE; FEMALE; GENE LINKAGE DISEQUILIBRIUM; GENE MUTATION; GENETIC PREDISPOSITION; GENETIC RISK; GENETIC RISK SCORE; GENOTYPE; HUMAN; MAJOR CLINICAL STUDY; MALE; MIDDLE AGED; PHENOTYPE; PROSPECTIVE STUDY; RISK ASSESSMENT; SCORING SYSTEM; SINGLE NUCLEOTIDE POLYMORPHISM; SYSTOLIC BLOOD PRESSURE; GENETICS; GENOME-WIDE ASSOCIATION STUDY; RISK FACTOR;

EID: 84939466828     PISSN: 07410395     EISSN: 10982272     Source Type: Journal    
DOI: 10.1002/gepi.21912     Document Type: Article
Times cited : (37)

References (37)
  • 1
    • 70350183757 scopus 로고    scopus 로고
    • Genetic scoring analysis: a way forward in genome wide association studies?
    • Amin, N, van Duijn CM, Janssens ACJW. 2009. Genetic scoring analysis: a way forward in genome wide association studies? Eur J Epidemiol 24:585-587.
    • (2009) Eur J Epidemiol , vol.24 , pp. 585-587
    • Amin, N.1    van Duijn, C.M.2    Janssens, A.C.J.W.3
  • 2
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289-300.
    • (1995) J R Stat Soc Ser B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 3
    • 84875700256 scopus 로고    scopus 로고
    • Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies
    • 405e1-405e3.
    • Chatterjee N, Wheeler B, Sampson J, Hartge P, Chanock SJ, Park J-H. 2013. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat. Genet. 45:400-405, 405e1-405e3.
    • (2013) Nat. Genet. , vol.45 , pp. 400-405
    • Chatterjee, N.1    Wheeler, B.2    Sampson, J.3    Hartge, P.4    Chanock, S.J.5    Park, J.-H.6
  • 4
    • 33847109797 scopus 로고    scopus 로고
    • Use and misuse of the receiver operating characteristic curve in risk prediction
    • Cook NR. 2007. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115:928-935.
    • (2007) Circulation , vol.115 , pp. 928-935
    • Cook, N.R.1
  • 6
    • 84866436976 scopus 로고    scopus 로고
    • Misuse of DeLong test to compare AUCs for nested models
    • Demler OV, Pencina MJ, D'Agostino RB. 2012. Misuse of DeLong test to compare AUCs for nested models. Stat Med 31:2577-2587.
    • (2012) Stat Med , vol.31 , pp. 2577-2587
    • Demler, O.V.1    Pencina, M.J.2    D'Agostino, R.B.3
  • 8
    • 77953351710 scopus 로고    scopus 로고
    • An application of random forests to a genome-wide association dataset: methodological considerations & new findings
    • Goldstein BA, Hubbard AE, Cutler A, Barcellos LF. 2010. An application of random forests to a genome-wide association dataset: methodological considerations & new findings. BMC Genetics 11:49.
    • (2010) BMC Genetics , vol.11 , pp. 49
    • Goldstein, B.A.1    Hubbard, A.E.2    Cutler, A.3    Barcellos, L.F.4
  • 9
    • 84906222392 scopus 로고    scopus 로고
    • Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example
    • Goldstein BA, Knowles JW, Salfati E, Ioannidis JPA, Assimes TL. 2014. Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example. Front Genet 5:254.
    • (2014) Front Genet , vol.5 , pp. 254
    • Goldstein, B.A.1    Knowles, J.W.2    Salfati, E.3    Ioannidis, J.P.A.4    Assimes, T.L.5
  • 11
    • 40149087235 scopus 로고    scopus 로고
    • Data and theory point to mainly additive genetic variance for complex traits
    • Hill WG, Goddard ME, Visscher PM. 2008. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4:e1000008.
    • (2008) PLoS Genet , vol.4 , pp. e1000008
    • Hill, W.G.1    Goddard, M.E.2    Visscher, P.M.3
  • 12
    • 84864417548 scopus 로고    scopus 로고
    • Fast and accurate genotype imputation in genome-wide association studies through pre-phasing
    • Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. 2012. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 44:955-959.
    • (2012) Nat Genet , vol.44 , pp. 955-959
    • Howie, B.1    Fuchsberger, C.2    Stephens, M.3    Marchini, J.4    Abecasis, G.R.5
  • 13
    • 82755175640 scopus 로고    scopus 로고
    • Genetic risk prediction in complex disease
    • Jostins L, Barrett JC. 2011. Genetic risk prediction in complex disease. Hum Mol Genet 20:R182-R188.
    • (2011) Hum Mol Genet , vol.20 , pp. R182-R188
    • Jostins, L.1    Barrett, J.C.2
  • 14
    • 84885169965 scopus 로고    scopus 로고
    • Integration of genomics into the electronic health record: mapping terra incognita
    • Kannry JL, Williams MS. 2013. Integration of genomics into the electronic health record: mapping terra incognita. Genet Med 15:757-760.
    • (2013) Genet Med , vol.15 , pp. 757-760
    • Kannry, J.L.1    Williams, M.S.2
  • 15
    • 78649508578 scopus 로고    scopus 로고
    • MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes
    • Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. 2010. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34:816-834.
    • (2010) Genet Epidemiol , vol.34 , pp. 816-834
    • Li, Y.1    Willer, C.J.2    Ding, J.3    Scheet, P.4    Abecasis, G.R.5
  • 17
    • 0031858636 scopus 로고    scopus 로고
    • Confidence intervals for the receiver operating characteristic area in studies with small samples
    • Obuchowski NA & Lieber ML. 1998. Confidence intervals for the receiver operating characteristic area in studies with small samples. Acad Radiol 5:561-571.
    • (1998) Acad Radiol , vol.5 , pp. 561-571
    • Obuchowski, N.A.1    Lieber, M.L.2
  • 19
    • 84876321464 scopus 로고    scopus 로고
    • Testing for improvement in prediction model performance
    • Pepe MS, Kerr KF, Longton G, Wang Z. 2013. Testing for improvement in prediction model performance. Stat Med 32:1467-1482.
    • (2013) Stat Med , vol.32 , pp. 1467-1482
    • Pepe, M.S.1    Kerr, K.F.2    Longton, G.3    Wang, Z.4
  • 22
    • 84863304598 scopus 로고    scopus 로고
    • R: A language and Environment for Statistical Computing
    • Vienna, Austria: R Foundation for Statistical Computing.
    • R Core Team. 2012. R: A language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
    • (2012)
  • 24
    • 81255196414 scopus 로고    scopus 로고
    • Recent methods for polygenic analysis of genome-wide data implicate an important effect of common variants on cardiovascular disease risk
    • Simonson MA, Wills AG, Keller MC, McQueen MB. 2011. Recent methods for polygenic analysis of genome-wide data implicate an important effect of common variants on cardiovascular disease risk. BMC Med Genet 12:146.
    • (2011) BMC Med Genet , vol.12 , pp. 146
    • Simonson, M.A.1    Wills, A.G.2    Keller, M.C.3    McQueen, M.B.4
  • 26
    • 0033485508 scopus 로고    scopus 로고
    • Low risk-factor profile and long-term cardiovascular and noncardiovascular mortality and life expectancy: findings for 5 large cohorts of young adult and middle-aged men and women
    • Stamler J, Stamler R, Neaton JD, Wentworth D, Daviglus ML, Garside D, Dyer AR, Liu K, Greenland P. 1999. Low risk-factor profile and long-term cardiovascular and noncardiovascular mortality and life expectancy: findings for 5 large cohorts of young adult and middle-aged men and women. JAMA 282:2012-2018.
    • (1999) JAMA , vol.282 , pp. 2012-2018
    • Stamler, J.1    Stamler, R.2    Neaton, J.D.3    Wentworth, D.4    Daviglus, M.L.5    Garside, D.6    Dyer, A.R.7    Liu, K.8    Greenland, P.9
  • 27
    • 78650082348 scopus 로고    scopus 로고
    • Genetic cardiovascular risk prediction: will we get there?
    • Thanassoulis G, Vasan RS. 2010. Genetic cardiovascular risk prediction: will we get there? Circulation 122:2323-2334.
    • (2010) Circulation , vol.122 , pp. 2323-2334
    • Thanassoulis, G.1    Vasan, R.S.2
  • 34
    • 79851487367 scopus 로고    scopus 로고
    • Synthetic associations created by rare variants do not explain most GWAS results
    • Wray NR, Purcell SM, Visscher PM. 2011. Synthetic associations created by rare variants do not explain most GWAS results. PLoS Biol 9:e1000579.
    • (2011) PLoS Biol , vol.9 , pp. e1000579
    • Wray, N.R.1    Purcell, S.M.2    Visscher, P.M.3
  • 35
    • 84887605920 scopus 로고    scopus 로고
    • Strategies for developing prediction models from genome-wide association studies
    • Wu J, Pfeiffer RM, Gail MH. 2013. Strategies for developing prediction models from genome-wide association studies. Genet Epidemiol 37:768-777.
    • (2013) Genet Epidemiol , vol.37 , pp. 768-777
    • Wu, J.1    Pfeiffer, R.M.2    Gail, M.H.3
  • 36
    • 4444382796 scopus 로고    scopus 로고
    • Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study
    • and others
    • Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J and others. 2004. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364:937-952.
    • (2004) Lancet , vol.364 , pp. 937-952
    • Yusuf, S.1    Hawken, S.2    Ounpuu, S.3    Dans, T.4    Avezum, A.5    Lanas, F.6    McQueen, M.7    Budaj, A.8    Pais, P.9    Varigos, J.10
  • 37
    • 0024591825 scopus 로고
    • The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators
    • The ARIC investigators. 1989. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol 129:687-702.
    • (1989) Am J Epidemiol , vol.129 , pp. 687-702


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.