-
2
-
-
52949136599
-
Transcriptional control of skeletogenesis
-
Karsenty G. Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet 2008; 9: 183-196.
-
(2008)
Annu Rev Genomics Hum Genet
, vol.9
, pp. 183-196
-
-
Karsenty, G.1
-
3
-
-
84255200563
-
Building strong bones: Molecular regulation of the osteoblast lineage
-
Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 2012; 13: 27-38.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 27-38
-
-
Long, F.1
-
4
-
-
39149139307
-
Small RNAs: Keeping stem cells in line
-
Stadler BM, Ruohola-Baker H. Small RNAs: keeping stem cells in line. Cell 2008; 132: 563-566.
-
(2008)
Cell
, vol.132
, pp. 563-566
-
-
Stadler, B.M.1
Ruohola-Baker, H.2
-
5
-
-
68049097296
-
MicroRNAs and parallel stem cell lives
-
Dirks PB. MicroRNAs and parallel stem cell lives. Cell 2009; 138: 423-424.
-
(2009)
Cell
, vol.138
, pp. 423-424
-
-
Dirks, P.B.1
-
6
-
-
84899029161
-
Concise review: MicroRNA function in multipotent mesenchymal stromal cells
-
Clark EA, Kalomoiris S, Nolta JA, Fierro FA. Concise review: MicroRNA function in multipotent mesenchymal stromal cells. Stem Cells 2014; 32: 1074-1082.
-
(2014)
Stem Cells
, vol.32
, pp. 1074-1082
-
-
Clark, E.A.1
Kalomoiris, S.2
Nolta, J.A.3
Fierro, F.A.4
-
7
-
-
67650169908
-
Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation
-
Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 2009; 284: 15676-15684.
-
(2009)
J Biol Chem
, vol.284
, pp. 15676-15684
-
-
Li, Z.1
Hassan, M.Q.2
Jafferji, M.3
Aqeilan, R.I.4
Garzon, R.5
Croce, C.M.6
-
8
-
-
79955016827
-
MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo
-
Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA 2011; 108: 6139-6144.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 6139-6144
-
-
Eskildsen, T.1
Taipaleenmaki, H.2
Stenvang, J.3
Abdallah, B.M.4
Ditzel, N.5
Nossent, A.Y.6
-
9
-
-
57449119515
-
Human multipotent stromal cells from bone marrow and microRNA: Regulation of differentiation and leukemia inhibitory factor expression
-
Oskowitz AZ, Lu J, Penfornis P, Ylostalo J, McBride J, Flemington EK et al. Human multipotent stromal cells from bone marrow and microRNA: regulation of differentiation and leukemia inhibitory factor expression. Proc Natl Acad Sci USA 2008; 105: 18372-18377.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 18372-18377
-
-
Oskowitz, A.Z.1
Lu, J.2
Penfornis, P.3
Ylostalo, J.4
McBride, J.5
Flemington, E.K.6
-
10
-
-
84877029650
-
The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a
-
Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T et al. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials 2013; 34: 5048-5058.
-
(2013)
Biomaterials
, vol.34
, pp. 5048-5058
-
-
Li, Y.1
Fan, L.2
Liu, S.3
Liu, W.4
Zhang, H.5
Zhou, T.6
-
11
-
-
38549101581
-
Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor
-
Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 2008; 23: 287-295.
-
(2008)
J Bone Miner Res
, vol.23
, pp. 287-295
-
-
Luzi, E.1
Marini, F.2
Sala, S.C.3
Tognarini, I.4
Galli, G.5
Brandi, M.L.6
-
12
-
-
84859493107
-
The regulatory network meninmicroRNA 26a as a possible target for RNA-based therapy of bone diseases
-
Luzi E, Marini F, Tognarini I, Galli G, Falchetti A, Brandi ML. The regulatory network meninmicroRNA 26a as a possible target for RNA-based therapy of bone diseases. Nucleic Acid Ther 2012; 22: 103-108.
-
(2012)
Nucleic Acid Ther
, vol.22
, pp. 103-108
-
-
Luzi, E.1
Marini, F.2
Tognarini, I.3
Galli, G.4
Falchetti, A.5
Brandi, M.L.6
-
13
-
-
0033515827
-
Multilineage potential of adult human mesenchymal stem cells
-
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147.
-
(1999)
Science
, vol.284
, pp. 143-147
-
-
Pittenger, M.F.1
Mackay, A.M.2
Beck, S.C.3
Jaiswal, R.K.4
Douglas, R.5
Mosca, J.D.6
-
14
-
-
33646103658
-
Fat tissue: An underappreciated source of stem cells for biotechnology
-
Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006; 24: 150-154.
-
(2006)
Trends Biotechnol
, vol.24
, pp. 150-154
-
-
Fraser, J.K.1
Wulur, I.2
Alfonso, Z.3
Hedrick, M.H.4
-
15
-
-
84860523401
-
Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine
-
Mizuno H, Tobita M, Uysal AC. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 2012; 30: 804-810.
-
(2012)
Stem Cells
, vol.30
, pp. 804-810
-
-
Mizuno, H.1
Tobita, M.2
Uysal, A.C.3
-
16
-
-
77951964203
-
Bone regeneration: The stem/progenitor cells point of view
-
cDeschaseaux F, Pontikoglou C, Sensebe L. Bone regeneration: the stem/progenitor cells point of view. J Cell Mol Med 2010; 14: 103-115.
-
(2010)
J Cell Mol Med
, vol.14
, pp. 103-115
-
-
Cdeschaseaux, F.1
Pontikoglou, C.2
Sensebe, L.3
-
17
-
-
18744373595
-
Human adipose tissue is a source of multipotent stem cells
-
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279-4295.
-
(2002)
Mol Biol Cell
, vol.13
, pp. 4279-4295
-
-
Zuk, P.A.1
Zhu, M.2
Ashjian, P.3
De Ugarte, D.A.4
Huang, J.I.5
Mizuno, H.6
-
18
-
-
36549014651
-
Stem cell therapy in bone repair and regeneration
-
Zaidi N, Nixon AJ. Stem cell therapy in bone repair and regeneration. Ann NYAcad Sci 2007; 1117: 62-72.
-
(2007)
Ann NYAcad Sci
, vol.1117
, pp. 62-72
-
-
Zaidi, N.1
Nixon, A.J.2
-
19
-
-
79957650575
-
Bone regeneration: Stem cell therapies and clinical studies in orthopaedics and traumatology
-
Gomez-Barrena E, Rosset P, Muller I, Giordano R, Bunu C, Layrolle P et al. Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J Cell Mol Med 2011; 15: 1266-1286.
-
(2011)
J Cell Mol Med
, vol.15
, pp. 1266-1286
-
-
Gomez-Barrena, E.1
Rosset, P.2
Muller, I.3
Giordano, R.4
Bunu, C.5
Layrolle, P.6
-
20
-
-
84900454260
-
Mesenchymal stem cells in regenerative medicine for musculoskeletal diseases: Bench, bedside, and industry
-
Wei CC, Lin AB, Hung SC. Mesenchymal stem cells in regenerative medicine for musculoskeletal diseases: bench, bedside, and industry. Cell Transplant 2014; 23: 505-512.
-
(2014)
Cell Transplant
, vol.23
, pp. 505-512
-
-
Wei, C.C.1
Lin, A.B.2
Hung, S.C.3
-
21
-
-
4444269045
-
Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue
-
Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004; 14: 311-324.
-
(2004)
Cell Physiol Biochem
, vol.14
, pp. 311-324
-
-
Lee, R.H.1
Kim, B.2
Choi, I.3
Kim, H.4
Choi, H.S.5
Suh, K.6
-
22
-
-
84857839807
-
Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation
-
Monaco E, Bionaz M, Rodriguez-Zas S, Hurley WL, Wheeler MB. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS One 2012; 7: e32481.
-
(2012)
PLoS One
, vol.7
-
-
Monaco, E.1
Bionaz, M.2
Rodriguez-Zas, S.3
Hurley, W.L.4
Wheeler, M.B.5
-
23
-
-
84866975219
-
Chip-based comparison of the osteogenesis of human bone marrow-and adipose tissue-derived mesenchymal stem cells under mechanical stimulation
-
Park SH, Sim WY, Min BH, Yang SS, Khademhosseini A, Kaplan DL. Chip-based comparison of the osteogenesis of human bone marrow-and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PLoS One 2012; 7: e46689.
-
(2012)
PLoS One
, vol.7
-
-
Park, S.H.1
Sim, W.Y.2
Min, B.H.3
Yang, S.S.4
Khademhosseini, A.5
Kaplan, D.L.6
-
24
-
-
84866239471
-
Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells
-
Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 2012; 21: 2724-2752.
-
(2012)
Stem Cells Dev
, vol.21
, pp. 2724-2752
-
-
Strioga, M.1
Viswanathan, S.2
Darinskas, A.3
Slaby, O.4
Michalek, J.5
-
25
-
-
33751168064
-
Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue
-
Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 2006; 99: 1285-1297.
-
(2006)
J Cell Biochem
, vol.99
, pp. 1285-1297
-
-
Izadpanah, R.1
Trygg, C.2
Patel, B.3
Kriedt, C.4
Dufour, J.5
Gimble, J.M.6
-
26
-
-
40949099450
-
Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials
-
Noel D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L et al. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 2008; 314: 1575-1584.
-
(2008)
Exp Cell Res
, vol.314
, pp. 1575-1584
-
-
Noel, D.1
Caton, D.2
Roche, S.3
Bony, C.4
Lehmann, S.5
Casteilla, L.6
-
27
-
-
58249088751
-
MicroRNAs: Target recognition and regulatory functions
-
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
28
-
-
0034017895
-
Human bone cell cultures in biocompatibility testing. Part II: Effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation
-
Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials 2000; 21: 1095-1102.
-
(2000)
Biomaterials
, vol.21
, pp. 1095-1102
-
-
Coelho, M.J.1
Fernandes, M.H.2
-
29
-
-
84888131596
-
MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling
-
Icli B, Wara AK, Moslehi J, Sun X, Plovie E, Cahill M et al. MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res 2013; 113: 1231-1241.
-
(2013)
Circ Res
, vol.113
, pp. 1231-1241
-
-
Icli, B.1
Wara, A.K.2
Moslehi, J.3
Sun, X.4
Plovie, E.5
Cahill, M.6
-
30
-
-
77956539987
-
Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3beta
-
Mohamed JS, Lopez MA, Boriek AM. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3beta. J Biol Chem 2010; 285: 29336-29347.
-
(2010)
J Biol Chem
, vol.285
, pp. 29336-29347
-
-
Mohamed, J.S.1
Lopez, M.A.2
Boriek, A.M.3
-
31
-
-
84862844602
-
Up-regulation of miR-26a promotes apoptosis of hypoxic rat neonatal cardiomyocytes by repressing GSK-3beta protein expression
-
Suh JH, Choi E, Cha MJ, Song BW, Ham O, Lee SY et al. Up-regulation of miR-26a promotes apoptosis of hypoxic rat neonatal cardiomyocytes by repressing GSK-3beta protein expression. Biochem Biophys Res Commun 2012; 423: 404-410.
-
(2012)
Biochem Biophys Res Commun
, vol.423
, pp. 404-410
-
-
Suh, J.H.1
Choi, E.2
Cha, M.J.3
Song, B.W.4
Ham, O.5
Lee, S.Y.6
-
32
-
-
77749270565
-
Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy
-
Krause U, Harris S, Green A, Ylostalo J, Zeitouni S, Lee N et al. Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy. Proc Natl Acad Sci USA 2010; 107: 4147-4152.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 4147-4152
-
-
Krause, U.1
Harris, S.2
Green, A.3
Ylostalo, J.4
Zeitouni, S.5
Lee, N.6
-
33
-
-
0033958662
-
Smad1 domains interacting with Hoxc-8 induce osteoblast differentiation
-
Yang X, Ji X, Shi X, Cao X. Smad1 domains interacting with Hoxc-8 induce osteoblast differentiation. J Biol Chem 2000; 275: 1065-1072.
-
(2000)
J Biol Chem
, vol.275
, pp. 1065-1072
-
-
Yang, X.1
Ji, X.2
Shi, X.3
Cao, X.4
-
34
-
-
77952966866
-
RBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repair
-
Minear S, Leucht P, Miller S, Helms JA. rBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repair. J Bone Miner Res 2010; 25: 1196-1207.
-
(2010)
J Bone Miner Res
, vol.25
, pp. 1196-1207
-
-
Minear, S.1
Leucht, P.2
Miller, S.3
Helms, J.A.4
-
35
-
-
77953381255
-
Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts
-
Kamiya N, Kobayashi T, Mochida Y, Yu PB, Yamauchi M, Kronenberg HM et al. Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J Bone Miner Res 2010; 25: 200-210.
-
(2010)
J Bone Miner Res
, vol.25
, pp. 200-210
-
-
Kamiya, N.1
Kobayashi, T.2
Mochida, Y.3
Yu, P.B.4
Yamauchi, M.5
Kronenberg, H.M.6
-
36
-
-
17144373190
-
Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation
-
Mbalaviele G, Sheikh S, Stains JP, Salazar VS, Cheng SL, Chen D et al. Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem 2005; 94: 403-418.
-
(2005)
J Cell Biochem
, vol.94
, pp. 403-418
-
-
Mbalaviele, G.1
Sheikh, S.2
Stains, J.P.3
Salazar, V.S.4
Cheng, S.L.5
Chen, D.6
-
37
-
-
33846987195
-
Beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation
-
Chen Y, Whetstone HC, Youn A, Nadesan P, Chow EC, Lin AC et al. Beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem 2007; 282: 526-533.
-
(2007)
J Biol Chem
, vol.282
, pp. 526-533
-
-
Chen, Y.1
Whetstone, H.C.2
Youn, A.3
Nadesan, P.4
Chow, E.C.5
Lin, A.C.6
-
38
-
-
84870318883
-
Wnt/beta-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts
-
Zhang R, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW et al. Wnt/beta-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone 2013; 52: 145-156.
-
(2013)
Bone
, vol.52
, pp. 145-156
-
-
Zhang, R.1
Oyajobi, B.O.2
Harris, S.E.3
Chen, D.4
Tsao, C.5
Deng, H.W.6
-
39
-
-
0037331189
-
Cartilage-like gene expression in differentiated human stem cell spheroids: A comparison of bone marrow-derived and adipose tissue-derived stromal cells
-
Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 2003; 48: 418-429.
-
(2003)
Arthritis Rheum
, vol.48
, pp. 418-429
-
-
Winter, A.1
Breit, S.2
Parsch, D.3
Benz, K.4
Steck, E.5
Hauner, H.6
-
40
-
-
77958605841
-
Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue
-
Toupadakis CA, Wong A, Genetos DC, Cheung WK, Borjesson DL, Ferraro GL et al. Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue. Am J Vet Res 2010; 71: 1237-1245.
-
(2010)
Am J Vet Res
, vol.71
, pp. 1237-1245
-
-
Toupadakis, C.A.1
Wong, A.2
Genetos, D.C.3
Cheung, W.K.4
Borjesson, D.L.5
Ferraro, G.L.6
-
41
-
-
23644456193
-
Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source
-
Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005; 52: 2521-2529.
-
(2005)
Arthritis Rheum
, vol.52
, pp. 2521-2529
-
-
Sakaguchi, Y.1
Sekiya, I.2
Yagishita, K.3
Muneta, T.4
-
42
-
-
77249098664
-
Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma
-
Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT et al. Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 2010; 31: 3572-3579.
-
(2010)
Biomaterials
, vol.31
, pp. 3572-3579
-
-
Niemeyer, P.1
Fechner, K.2
Milz, S.3
Richter, W.4
Suedkamp, N.P.5
Mehlhorn, A.T.6
-
43
-
-
79955934288
-
A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue
-
Shafiee A, Seyedjafari E, Soleimani M, Ahmadbeigi N, Dinarvand P, Ghaemi N. A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnol Lett 2011; 33: 1257-1264.
-
(2011)
Biotechnol Lett
, vol.33
, pp. 1257-1264
-
-
Shafiee, A.1
Seyedjafari, E.2
Soleimani, M.3
Ahmadbeigi, N.4
Dinarvand, P.5
Ghaemi, N.6
-
44
-
-
62749193819
-
Dact1, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the Wnt/beta-catenin signaling network
-
Lagathu C, Christodoulides C, Virtue S, Cawthorn WP, Franzin C, Kimber WA et al. Dact1, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the Wnt/beta-catenin signaling network. Diabetes 2009; 58: 609-619.
-
(2009)
Diabetes
, vol.58
, pp. 609-619
-
-
Lagathu, C.1
Christodoulides, C.2
Virtue, S.3
Cawthorn, W.P.4
Franzin, C.5
Kimber, W.A.6
-
45
-
-
84870508415
-
The microRNA-26a target E2F7 sustains cell proliferation and inhibits monocytic differentiation of acute myeloid leukemia cells
-
Salvatori B, Iosue I, Mangiavacchi A, Loddo G, Padula F, Chiaretti S et al. The microRNA-26a target E2F7 sustains cell proliferation and inhibits monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis 2012; 3: e413.
-
(2012)
Cell Death Dis
, vol.3
, pp. e413
-
-
Salvatori, B.1
Iosue, I.2
Mangiavacchi, A.3
Loddo, G.4
Padula, F.5
Chiaretti, S.6
-
46
-
-
84887046365
-
MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation
-
Fu X, Jin L, Wang X, Luo A, Hu J, Zheng X et al. MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation. Proc Natl Acad Sci USA 2013; 110: 17892-17897.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 17892-17897
-
-
Fu, X.1
Jin, L.2
Wang, X.3
Luo, A.4
Hu, J.5
Zheng, X.6
-
47
-
-
84867170366
-
miR-26a is required for skeletal muscle differentiation and regeneration in mice
-
Dey BK, Gagan J, Yan Z, Dutta A. miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev 2012; 26: 2180-2191.
-
(2012)
Genes Dev
, vol.26
, pp. 2180-2191
-
-
Dey, B.K.1
Gagan, J.2
Yan, Z.3
Dutta, A.4
-
48
-
-
84901423103
-
MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes
-
Karbiener M, Pisani DF, Frontini A, Oberreiter LM, Lang E, Vegiopoulos A et al. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells 2014; 32: 1578-1590.
-
(2014)
Stem Cells
, vol.32
, pp. 1578-1590
-
-
Karbiener, M.1
Pisani, D.F.2
Frontini, A.3
Oberreiter, L.M.4
Lang, E.5
Vegiopoulos, A.6
-
49
-
-
34247495591
-
miR-21-mediated tumor growth
-
Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene 2007; 26: 2799-2803.
-
(2007)
Oncogene
, vol.26
, pp. 2799-2803
-
-
Si, M.L.1
Zhu, S.2
Wu, H.3
Lu, Z.4
Wu, F.5
Mo, Y.Y.6
-
50
-
-
81255205360
-
Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis
-
Darido C, Georgy SR, Wilanowski T, Dworkin S, Auden A, Zhao Q et al. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell 2011; 20: 635-648.
-
(2011)
Cancer Cell
, vol.20
, pp. 635-648
-
-
Darido, C.1
Georgy, S.R.2
Wilanowski, T.3
Dworkin, S.4
Auden, A.5
Zhao, Q.6
-
51
-
-
80054882112
-
MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat dietinduced obesity alters microRNA 21 expression in white adipose tissues
-
Kim YJ, Hwang SH, Cho HH, Shin KK, Bae YC, Jung JS. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat dietinduced obesity alters microRNA 21 expression in white adipose tissues. J Cell Physiol 2012; 227: 183-193.
-
(2012)
J Cell Physiol
, vol.227
, pp. 183-193
-
-
Kim, Y.J.1
Hwang, S.H.2
Cho, H.H.3
Shin, K.K.4
Bae, Y.C.5
Jung, J.S.6
-
52
-
-
33846609167
-
Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate
-
Flynt AS, Li N, Thatcher EJ, Solnica-Krezel L, Patton JG. Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet 2007; 39: 259-263.
-
(2007)
Nat Genet
, vol.39
, pp. 259-263
-
-
Flynt, A.S.1
Li, N.2
Thatcher, E.J.3
Solnica-Krezel, L.4
Patton, J.G.5
-
53
-
-
84872094361
-
miR-214 targets ATF4 to inhibit bone formation
-
Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A et al. miR-214 targets ATF4 to inhibit bone formation. Nat Med 2013; 19: 93-100.
-
(2013)
Nat Med
, vol.19
, pp. 93-100
-
-
Wang, X.1
Guo, B.2
Li, Q.3
Peng, J.4
Yang, Z.5
Wang, A.6
-
54
-
-
61449210913
-
A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow
-
Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc 2009; 4: 102-106.
-
(2009)
Nat Protoc
, vol.4
, pp. 102-106
-
-
Soleimani, M.1
Nadri, S.2
-
55
-
-
79952423223
-
Feeder-dependent and feeder-independent iPS cell derivation from human and mouse adipose stem cells
-
Sugii S, Kida Y, Berggren WT, Evans RM. Feeder-dependent and feeder-independent iPS cell derivation from human and mouse adipose stem cells. Nat Protoc 2011; 6: 346-358.
-
(2011)
Nat Protoc
, vol.6
, pp. 346-358
-
-
Sugii, S.1
Kida, Y.2
Berggren, W.T.3
Evans, R.M.4
|