메뉴 건너뛰기




Volumn 11, Issue 7, 2015, Pages

Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models

Author keywords

[No Author keywords available]

Indexed keywords

GENE EXPRESSION; MAXIMUM ENTROPY METHODS; PROTEINS;

EID: 84938651255     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1004182     Document Type: Review
Times cited : (112)

References (86)
  • 2
    • 69849101988 scopus 로고    scopus 로고
    • Maximum entropy reconstructions of dynamic signaling networks from quantitative proteomics data
    • Locasale JW, Wolf-Yadlin A, Maximum entropy reconstructions of dynamic signaling networks from quantitative proteomics data. PloS one. 2009;4(8):e6522. doi: 10.1371/journal.pone.0006522 19707567
    • (2009) PloS one , vol.4 , Issue.8 , pp. 6522
    • Locasale, J.W.1    Wolf-Yadlin, A.2
  • 3
    • 33646170322 scopus 로고    scopus 로고
    • Weak pairwise correlations imply strongly correlated network states in a neural population
    • Schneidman E, Berry II MJ, Segev R, Bialek W, Weak pairwise correlations imply strongly correlated network states in a neural population. Nature. 2006;440:1007–1012. 16625187
    • (2006) Nature , vol.440 , pp. 1007-1012
    • Schneidman, E.1    Berry II, M.J.2    Segev, R.3    Bialek, W.4
  • 4
    • 38349042222 scopus 로고    scopus 로고
    • A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro
    • Tang A, Jackson D, Hobbs J, Chen W, Smith JL, Patel H, et al. A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. The Journal of Neuroscience. 2008;28(2):505–518. doi: 10.1523/JNEUROSCI.3359-07.2008 18184793
    • (2008) The Journal of Neuroscience , vol.28 , Issue.2 , pp. 505-518
    • Tang, A.1    Jackson, D.2    Hobbs, J.3    Chen, W.4    Smith, J.L.5    Patel, H.6
  • 6
    • 82855163967 scopus 로고    scopus 로고
    • Protein 3D Structure Computed from Evolutionary Sequence Variation
    • Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, et al. Protein 3D Structure Computed from Evolutionary Sequence Variation. PLoS One. 2011;6(12):e28766. doi: 10.1371/journal.pone.0028766 22163331
    • (2011) PLoS One , vol.6 , Issue.12 , pp. 28766
    • Marks, D.S.1    Colwell, L.J.2    Sheridan, R.3    Hopf, T.A.4    Pagnani, A.5    Zecchina, R.6
  • 8
    • 84856090271 scopus 로고    scopus 로고
    • PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments
    • Jones DT, Buchan DWA, Cozzetto D, Pontil M, PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics. 2012;28(2):184–190. doi: 10.1093/bioinformatics/btr638 22101153
    • (2012) Bioinformatics , vol.28 , Issue.2 , pp. 184-190
    • Jones, D.T.1    Buchan, D.W.A.2    Cozzetto, D.3    Pontil, M.4
  • 9
    • 77953980096 scopus 로고    scopus 로고
    • Statistical mechanics of letters in words
    • Stephens GJ, Bialek W, Statistical mechanics of letters in words. Physical Review E. 2010;81(6):066119.
    • (2010) Physical Review E , vol.81 , Issue.6 , pp. 066119
    • Stephens, G.J.1    Bialek, W.2
  • 14
    • 0033258311 scopus 로고    scopus 로고
    • Kohane IS. Unsupervised knowledge discovery in medical databases using relevance networks. In: Proceedings of the AMIA Symposium
    • Butte AJ, Kohane IS. Unsupervised knowledge discovery in medical databases using relevance networks. In: Proceedings of the AMIA Symposium. American Medical Informatics Association; 1999. p. 711–715.
    • American Medical Informatics Association , vol.1999 , pp. 711-715
    • Butte, A.J.1
  • 15
    • 0036191190 scopus 로고    scopus 로고
    • Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling
    • Toh H, Horimoto K, Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics. 2002;18(2):287–297. 11847076
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 287-297
    • Toh, H.1    Horimoto, K.2
  • 17
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • Schäfer J, Strimmer K, A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical applications in genetics and molecular biology. 2005;4(1):1–32.
    • (2005) Statistical applications in genetics and molecular biology , vol.4 , Issue.1 , pp. 1-32
    • Schäfer, J.1    Strimmer, K.2
  • 18
    • 67049119347 scopus 로고    scopus 로고
    • Pairwise maximum entropy models for studying large biological systems: when they can work and when they can’t
    • Roudi Y, Nirenberg S, Latham PE, Pairwise maximum entropy models for studying large biological systems: when they can work and when they can’t. PLoS Computational Biology. 2009;5(5):e1000380. doi: 10.1371/journal.pcbi.1000380 19424487
    • (2009) PLoS Computational Biology , vol.5 , Issue.5 , pp. 1000380
    • Roudi, Y.1    Nirenberg, S.2    Latham, P.E.3
  • 20
    • 84929746288 scopus 로고
    • A note on the derivation of formulae for multiple and partial correlation
    • Guttman L, A note on the derivation of formulae for multiple and partial correlation. The Annals of Mathematical Statistics. 1938;9(4):305–308.
    • (1938) The Annals of Mathematical Statistics , vol.9 , Issue.4 , pp. 305-308
    • Guttman, L.1
  • 21
    • 79251567361 scopus 로고    scopus 로고
    • Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data
    • Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ, Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Systems Biology. 2011;5(1):21.
    • (2011) BMC Systems Biology , vol.5 , Issue.1 , pp. 21
    • Krumsiek, J.1    Suhre, K.2    Illig, T.3    Adamski, J.4    Theis, F.J.5
  • 24
    • 0028295169 scopus 로고
    • Correlated mutations and residue contacts in proteins
    • Göbel U, Sander C, Schneider R, Valencia A, Correlated mutations and residue contacts in proteins. Proteins. 1994;18(4):309–317. 8208723
    • (1994) Proteins , vol.18 , Issue.4 , pp. 309-317
    • Göbel, U.1    Sander, C.2    Schneider, R.3    Valencia, A.4
  • 25
    • 0027952860 scopus 로고
    • Compensating changes in protein multiple sequence alignments
    • Taylor WR, Hatrick K, Compensating changes in protein multiple sequence alignments. Protein Engineering. 1994;7(3):341–348. 8177883
    • (1994) Protein Engineering , vol.7 , Issue.3 , pp. 341-348
    • Taylor, W.R.1    Hatrick, K.2
  • 26
    • 0028084754 scopus 로고
    • Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations?
    • Shindyalov IN, Kolchanov NA, Sander C, Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations? Protein Engineering. 1994;7(3):349–358. 8177884
    • (1994) Protein Engineering , vol.7 , Issue.3 , pp. 349-358
    • Shindyalov, I.N.1    Kolchanov, N.A.2    Sander, C.3
  • 27
    • 38849115223 scopus 로고    scopus 로고
    • Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction
    • Dunn SD, Wahl LM, Gloor GB, Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics. 2008;24(3):333–340. 18057019
    • (2008) Bioinformatics , vol.24 , Issue.3 , pp. 333-340
    • Dunn, S.D.1    Wahl, L.M.2    Gloor, G.B.3
  • 28
    • 76749112068 scopus 로고    scopus 로고
    • Disentangling direct from indirect co-evolution of residues in protein alignments
    • Burger L, Van Nimwegen E, Disentangling direct from indirect co-evolution of residues in protein alignments. PLoS computational biology. 2010;6(1):e1000633. doi: 10.1371/journal.pcbi.1000633 20052271
    • (2010) PLoS computational biology , vol.6 , Issue.1 , pp. 1000633
    • Burger, L.1    Van Nimwegen, E.2
  • 30
    • 84938646434 scopus 로고    scopus 로고
    • Lapedes A, Giraud B, Jarzynski C. Using Sequence Alignments to Predict Protein Structure and Stability With High Accuracy. eprint arXiv:12072484. 2002;.
  • 36
    • 0001479726 scopus 로고
    • An algorithm for finding the distribution of maximal entropy
    • Agmon N, Alhassid Y, Levine RD, An algorithm for finding the distribution of maximal entropy. Journal of Computational Physics. 1979;30(2):250–258.
    • (1979) Journal of Computational Physics , vol.30 , Issue.2 , pp. 250-258
    • Agmon, N.1    Alhassid, Y.2    Levine, R.D.3
  • 37
    • 84940644968 scopus 로고
    • A Mathematical Theory of Communication
    • Shannon CE, A Mathematical Theory of Communication. Bell system technical journal. 1948;27(3):379–423.
    • (1948) Bell system technical journal , vol.27 , Issue.3 , pp. 379-423
    • Shannon, C.E.1
  • 38
    • 11944266539 scopus 로고
    • Information Theory and Statistical Mechanics
    • Jaynes ET, Information Theory and Statistical Mechanics. Physical Review. 1957;106(4):620–630.
    • (1957) Physical Review , vol.106 , Issue.4 , pp. 620-630
    • Jaynes, E.T.1
  • 39
    • 11944275853 scopus 로고
    • Information Theory and Statistical Mechanics II
    • Jaynes ET, Information Theory and Statistical Mechanics II. Physical Review. 1957;108(2):171–190.
    • (1957) Physical Review , vol.108 , Issue.2 , pp. 171-190
    • Jaynes, E.T.1
  • 43
    • 2642553864 scopus 로고    scopus 로고
    • On the (Boltzmann) entropy of non-equilibrium systems
    • Goldstein S, Lebowitz JL, On the (Boltzmann) entropy of non-equilibrium systems. Physica D: Nonlinear Phenomena. 2004;193(1):53–66.
    • (2004) Physica D: Nonlinear Phenomena , vol.193 , Issue.1 , pp. 53-66
    • Goldstein, S.1    Lebowitz, J.L.2
  • 46
    • 84856489442 scopus 로고    scopus 로고
    • HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment
    • Remmert M, Biegert A, Hauser A, Söding J, HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature methods. 2012;9(2):173–175.
    • (2012) Nature methods , vol.9 , Issue.2 , pp. 173-175
    • Remmert, M.1    Biegert, A.2    Hauser, A.3    Söding, J.4
  • 47
    • 79959931985 scopus 로고    scopus 로고
    • HMMER web server: interactive sequence similarity searching
    • Finn RD, Clements J, Eddy SR, HMMER web server: interactive sequence similarity searching. Nucleic acids research. 2011;p. gkr367.
    • (2011) Nucleic acids research , pp. 367
    • Finn, R.D.1    Clements, J.2    Eddy, S.R.3
  • 48
    • 84899707813 scopus 로고    scopus 로고
    • Fast and accurate multivariate Gaussian modeling of protein families: Predicting residue contacts and protein-interaction partners
    • Baldassi C, Zamparo M, Feinauer C, Procaccini A, Zecchina R, Weigt M, et al. Fast and accurate multivariate Gaussian modeling of protein families: Predicting residue contacts and protein-interaction partners. PloS one. 2014;9(3):e92721. doi: 10.1371/journal.pone.0092721 24663061
    • (2014) PloS one , vol.9 , Issue.3 , pp. 92721
    • Baldassi, C.1    Zamparo, M.2    Feinauer, C.3    Procaccini, A.4    Zecchina, R.5    Weigt, M.6
  • 50
    • 84903186941 scopus 로고    scopus 로고
    • A general pairwise interaction model provides an accurate description of in vivo transcription factor binding sites
    • Santolini M, Mora T, Hakim V, A general pairwise interaction model provides an accurate description of in vivo transcription factor binding sites. PloS one. 2014;9(6):e99015. doi: 10.1371/journal.pone.0099015 24926895
    • (2014) PloS one , vol.9 , Issue.6 , pp. 99015
    • Santolini, M.1    Mora, T.2    Hakim, V.3
  • 51
    • 84872521100 scopus 로고    scopus 로고
    • Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models
    • Ekeberg M, Lövkvist C, Lan Y, Weigt M, Aurell E, Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models. Physical Review E. 2013;87(1):012707.
    • (2013) Physical Review E , vol.87 , Issue.1 , pp. 012707
    • Ekeberg, M.1    Lövkvist, C.2    Lan, Y.3    Weigt, M.4    Aurell, E.5
  • 53
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen N, Bühlmann P, High-dimensional graphs and variable selection with the lasso. The Annals of Statistics. 2006;34(3):1436–1462.
    • (2006) The Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 54
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J, Hastie T, Tibshirani R, Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9(3):432–441. 18079126
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 56
    • 0346961488 scopus 로고    scopus 로고
    • A well-conditioned estimator for large-dimensional covariance matrices
    • Ledoit O, Wolf M, A well-conditioned estimator for large-dimensional covariance matrices. Journal of multivariate analysis. 2004;88(2):365–411.
    • (2004) Journal of multivariate analysis , vol.88 , Issue.2 , pp. 365-411
    • Ledoit, O.1    Wolf, M.2
  • 57
    • 0001000562 scopus 로고    scopus 로고
    • Efficient learning in Boltzmann machines using linear response theory
    • Kappen HJ, Rodriguez F, Efficient learning in Boltzmann machines using linear response theory. Neural Computation. 1998;10(5):1137–1156.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1137-1156
    • Kappen, H.J.1    Rodriguez, F.2
  • 58
    • 0001143296 scopus 로고    scopus 로고
    • Mean-field theory of Boltzmann machine learning
    • Tanaka T, Mean-field theory of Boltzmann machine learning. Physical Review E. 1998;58(2):2302–2310.
    • (1998) Physical Review E , vol.58 , Issue.2 , pp. 2302-2310
    • Tanaka, T.1
  • 61
    • 84938646436 scopus 로고    scopus 로고
    • Broderick T, Dudik M, Tkacik G, Schapire RE, Bialek W. Faster solutions of the inverse pairwise Ising problem. arXiv preprint arXiv:07122437. 2007;.
  • 62
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • Besag J, Statistical analysis of non-lattice data. The Statistician. 1975;24(3):179–195.
    • (1975) The Statistician , vol.24 , Issue.3 , pp. 179-195
    • Besag, J.1
  • 63
    • 56449098139 scopus 로고    scopus 로고
    • Jordan MI. An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators. In: Proceedings of the 25th international conference on Machine learning
    • Liang P, Jordan MI. An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators. In: Proceedings of the 25th international conference on Machine learning. ACM; 2008. p. 584–591.
    • ACM , vol.2008 , pp. 584-591
    • Liang, P.1
  • 64
    • 66549109770 scopus 로고    scopus 로고
    • Estimation of sparse binary pairwise markov networks using pseudo-likelihoods
    • Höfling H, Tibshirani R, Estimation of sparse binary pairwise markov networks using pseudo-likelihoods. The Journal of Machine Learning Research. 2009;10:883–906.
    • (2009) The Journal of Machine Learning Research , vol.10 , pp. 883-906
    • Höfling, H.1    Tibshirani, R.2
  • 66
    • 84884603324 scopus 로고    scopus 로고
    • Assessing the utility of coevolution-based residue—residue contact predictions in a sequence-and structure-rich era
    • Kamisetty H, Ovchinnikov S, Baker D, Assessing the utility of coevolution-based residue—residue contact predictions in a sequence-and structure-rich era. Proceedings of the National Academy of Sciences. 2013;110(39):15674–15679.
    • (2013) Proceedings of the National Academy of Sciences , vol.110 , Issue.39 , pp. 15674-15679
    • Kamisetty, H.1    Ovchinnikov, S.2    Baker, D.3
  • 67
    • 84899847547 scopus 로고    scopus 로고
    • Robust and accurate prediction of residue—residue interactions across protein interfaces using evolutionary information
    • Ovchinnikov S, Kamisetty H, Baker D, Robust and accurate prediction of residue—residue interactions across protein interfaces using evolutionary information. eLife. 2014;3: e02030. doi: 10.7554/eLife.02030 24842992
    • (2014) eLife , vol.3 , pp. 02030
    • Ovchinnikov, S.1    Kamisetty, H.2    Baker, D.3
  • 68
    • 33744544478 scopus 로고    scopus 로고
    • Log-determinant relaxation for approximate inference in discrete Markov random fields
    • Wainwright MJ, Jordan MI, Log-determinant relaxation for approximate inference in discrete Markov random fields. IEEE Transactions on Signal Processing. 2006;54(6):2099–2109.
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.6 , pp. 2099-2109
    • Wainwright, M.J.1    Jordan, M.I.2
  • 69
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data
    • Banerjee O, El Ghaoui L, d’Aspremont A, Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. The Journal of Machine Learning Research. 2008;9:485–516.
    • (2008) The Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    d’Aspremont, A.3
  • 70
    • 77951455815 scopus 로고    scopus 로고
    • High-dimensional Ising model selection using l1-regularized logistic regression
    • Ravikumar P, Wainwright MJ, Lafferty JD, High-dimensional Ising model selection using l1-regularized logistic regression. The Annals of Statistics. 2010;38(3):1287–1319.
    • (2010) The Annals of Statistics , vol.38 , Issue.3 , pp. 1287-1319
    • Ravikumar, P.1    Wainwright, M.J.2    Lafferty, J.D.3
  • 73
    • 57649124192 scopus 로고    scopus 로고
    • Reverse engineering the genotype—phenotype map with natural genetic variation
    • Rockman MV, Reverse engineering the genotype—phenotype map with natural genetic variation. Nature. 2008;456(7223):738–744. doi: 10.1038/nature07633 19079051
    • (2008) Nature , vol.456 , Issue.7223 , pp. 738-744
    • Rockman, M.V.1
  • 74
    • 84925031191 scopus 로고    scopus 로고
    • Methods of integrating data to uncover genotype-phenotype interactions
    • Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D, Methods of integrating data to uncover genotype-phenotype interactions. Nature Reviews Genetics. 2015;16(2):85–97. doi: 10.1038/nrg3868 25582081
    • (2015) Nature Reviews Genetics , vol.16 , Issue.2 , pp. 85-97
    • Ritchie, M.D.1    Holzinger, E.R.2    Li, R.3    Pendergrass, S.A.4    Kim, D.5
  • 75
  • 76
    • 84938646437 scopus 로고    scopus 로고
    • EVFold. http://evfold.org.
  • 77
    • 84938646438 scopus 로고    scopus 로고
    • Direct Coupling Analysis. http://dca.rice.edu.
  • 78
    • 84938646439 scopus 로고    scopus 로고
    • Ekeberg M. pseudolikelihood maximization Direct-Coupling Analysis. http://plmdca.csc.kth.se.
  • 79
    • 84938646440 scopus 로고    scopus 로고
    • Pagnani A. Pseudo Likelihood Maximization for protein in Julia. https://github.com/pagnani/PlmDCA.
  • 80
    • 84938646441 scopus 로고    scopus 로고
    • CCMpred. https://bitbucket.org/soedinglab/ccmpred.
  • 81
    • 84938646442 scopus 로고    scopus 로고
    • Gremlin. http://gremlin.bakerlab.org.
  • 82
    • 84938646443 scopus 로고    scopus 로고
    • Psicov. http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV.
  • 83
    • 84938646444 scopus 로고    scopus 로고
    • Friedman J, Hastie T, Tibshirani R. Graphical lasso in R and Matlab. http://statweb.stanford.edu/~tibs/glasso/.
  • 84
    • 84938646445 scopus 로고    scopus 로고
    • Witten DM, Tibshirani R. scout: Implements the Scout method for Covariance-Regularized Regression. http://cran.r-project.org/web/packages/scout/index.html.
  • 85
    • 84938646446 scopus 로고    scopus 로고
    • Schäfer J, Opgen-Rhein R, Strimmer K. Modeling and Inferring Gene Networks. http://strimmerlab.org/software/genenet/.
  • 86
    • 84938646447 scopus 로고    scopus 로고
    • Schäfer J, Opgen-Rhein R, Zuber V, Ahdesmäki M, Silva APD, Strimmer K. Efficient Estimation of Covariance and (Partial) Correlation. http://strimmerlab.org/software/corpcor/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.